地理研究 ›› 2019, Vol. 38 ›› Issue (2): 414-426.doi: 10.11821/dlyj020171151
收稿日期:
2017-11-27
修回日期:
2018-08-11
出版日期:
2019-02-20
发布日期:
2019-02-20
作者简介:
作者简介:周旭(1993- ),男,山东济宁人,硕士,研究方向为土壤重金属污染评价。E-mail:
基金资助:
Received:
2017-11-27
Revised:
2018-08-11
Online:
2019-02-20
Published:
2019-02-20
摘要:
选取山东省广饶县作为研究区,采集300个表层土壤样品(0~20 cm),测定As、Cd、Co、Cr、Cu、Hg、Mn、Ni、Pb和Zn等10种重金属含量;运用多元统计和地统计分析方法揭示广饶县土壤重金属元素的来源与空间分布特征,最后利用H?kanson潜在生态风险指数法评价重金属的潜在生态风险。结果表明:① 研究区土壤中Co和Pb的平均值低于山东省背景值,其他8种元素的平均值均超过山东省背景值;特别是Cd和Hg的平均含量分别达到山东省背景值的1.86倍和2.50倍,说明在土壤中存在明显的富集。② As、Co、Cr、Cu、Mn、Ni和Zn为自然源,受成土母质控制;Hg为人为源,主要来源于煤炭燃烧和工业排放;Cd和Pb受自然和人为因素共同控制。③ 成土母质控制着As、Cd、 Co、Cr、Cu、Mn、Ni、Pb和Zn的基本分布格局,不同土地利用类型的土壤Hg含量差别较明显,其高值区集中在城镇建设用地。④ 总体上,研究区为中等生态风险的偏高水平,其中Cd和Hg分别为中等和较高生态风险,其余8种元素处于低生态风险。
周旭, 吕建树. 山东省广饶县土壤重金属来源、分布及生态风险[J]. 地理研究, 2019, 38(2): 414-426.
Xu ZHOU, Jianshu LV. Sources, distribution and ecological risk of soil heavy metals in Guangrao county, Shandong province[J]. GEOGRAPHICAL RESEARCH, 2019, 38(2): 414-426.
表1
广饶县土壤重金属元素描述性统计(mg·kg-1)"
重金属 | 范围 | 均值 | 中值 | 标准差 | 偏度 | 峰度 | 变异系数 | 山东省背景值[ | 国家二级标准[ |
---|---|---|---|---|---|---|---|---|---|
As | 5.2~17.2 | 10.8 | 10.3 | 2.64 | 0.44 | -0.50 | 0.24 | 8.9 | 30 |
Cd | 0.07~0.29 | 0.13 | 0.13 | 0.03 | 1.10 | 2.54 | 0.25 | 0.07 | 0.3 |
Co | 6.1~16.9 | 11.9 | 11.9 | 1.83 | -0.15 | 0.22 | 0.15 | 12.6 | - |
Cr | 53.5~94.1 | 68.1 | 67.5 | 5.53 | 0.54 | 1.08 | 0.08 | 64.3 | 200 |
Cu | 11.8~37.8 | 24.0 | 23.7 | 4.42 | 0.14 | 0.69 | 0.18 | 22.3 | 100 |
Hg | 0.011~0.537 | 0.038 | 0.032 | 0.04 | 9.99 | 128.71 | 0.95 | 0.016 | 0.5 |
Mn | 411~970 | 586 | 576 | 98.46 | 0.91 | 1.11 | 0.17 | 552 | - |
Ni | 14.6~43.4 | 28.8 | 28.6 | 5.05 | 0.09 | 0.01 | 0.18 | 24.4 | 50 |
Pb | 12.6~30.4 | 22.6 | 22.8 | 2.99 | -0.77 | 1.36 | 0.13 | 24.5 | 300 |
Zn | 34.8~98.6 | 67.2 | 66.6 | 10.63 | -0.08 | 0.29 | 0.16 | 60.9 | 250 |
表2
广饶县土壤重金属元素的相关系数"
As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
As | 1 | |||||||||
Cd | 0.52** | 1 | ||||||||
Co | 0.66** | 0.40** | 1 | |||||||
Cr | 0.57** | 0.46** | 0.54** | 1 | ||||||
Cu | 0.69** | 0.54** | 0.82** | 0.63** | 1 | |||||
Hg | -0.09 | 0.05 | -0.03 | -0.11 | 0.05 | 1 | ||||
Mn | 0.85** | 0.53** | 0.77** | 0.67** | 0.80** | -0.10 | 1 | |||
Ni | 0.80** | 0.52** | 0.93** | 0.63** | 0.84** | -0.07 | 0.88** | 1 | ||
Pb | 0.51** | 0.48** | 0.63** | 0.41** | 0.78** | 0.19** | 0.50** | 0.62** | 1 | |
Zn | 0.75** | 0.54** | 0.89** | 0.59** | 0.92** | 0.02 | 0.83** | 0.92** | 0.74** | 1 |
Al2O3 | 0.63** | 0.35** | 0.79** | 0.51** | 0.84** | -0.03 | 0.73** | 0.77** | 0.68** | 0.81** |
Fe2O3 | 0.83** | 0.52** | 0.84** | 0.69** | 0.90** | -0.07 | 0.91** | 0.91** | 0.68** | 0.91** |
MgO | 0.74** | 0.50** | 0.62** | 0.63** | 0.59** | -0.18** | 0.77** | 0.76** | 0.30** | 0.68** |
表3
重金属元素因子矩阵"
重金属 | PC1 | PC2 | PC3 |
---|---|---|---|
As | 0.839 | -0.157 | 0.087 |
Cd | 0.635 | 0.109 | 0.684 |
Co | 0.888 | -0.010 | -0.322 |
Cr | 0.714 | -0.217 | 0.274 |
Cu | 0.929 | 0.117 | -0.091 |
Hg | -0.018 | 0.934 | 0.044 |
Mn | 0.915 | -0.155 | 0.020 |
Ni | 0.948 | -0.082 | -0.148 |
Pb | 0.750 | 0.380 | -0.087 |
Zn | 0.953 | 0.072 | -0.151 |
方差贡献率(%) | 64.76 | 11.51 | 7.17 |
累计方差贡献率(%) | 64.76 | 76.72 | 83.44 |
表4
来自不同土地利用类型和成土母质的土壤重金属含量差异(mg·kg-1)"
参数 | As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
土地 利用 类型 | 耕地 | 范围 | 5.2~17.7 | 0.07~0.24 | 6.1~16.9 | 53.5~94.1 | 11.8~37.9 | 0.011~0.261 | 411~970 | 14.6~43.4 | 12.6~29.3 | 34.8~98.7 |
平均值 | 10.9b | 0.13a | 12.1a | 68.2a | 24.2a | 0.036b | 593a | 29.1a | 22.7a | 67.9a | ||
标准差 | 2.65 | 0.01 | 1.78 | 5.59 | 4.38 | 0.02 | 98.70 | 4.89 | 2.81 | 10.32 | ||
林地 | 范围 | 8.6~14.5 | 0.11~0.17 | 10.9~13.3 | 64.1~74.0 | 22.5~28.6 | 0.018~0.052 | 511~698 | 25.6~32.7 | 21.4~25.8 | 63.9~78.3 | |
平均值 | 11.4a | 0.15a | 11.9a | 68.4a | 24.6a | 0.033b | 601a | 28.8a | 23.1a | 69.1a | ||
标准差 | 2.28 | 0.04 | 0.75 | 3.53 | 2.36 | 0.01 | 66.99 | 2.60 | 1.86 | 5.92 | ||
草地 | 范围 | 9.8~12.7 | 0.08~0.14 | 10.7~13.5 | 66.4~72.7 | 20.7~23.9 | 0.019~0.023 | 568~639 | 27.2~30.6 | 22.4~23.3 | 63.2~65.6 | |
平均值 | 11.3a | 0.11b | 11.8a | 69.1a | 22.4a | 0.021b | 597a | 28.9a | 22.8a | 64.3b | ||
标准差 | 1.25 | 0.02 | 1.03 | 2.06 | 1.24 | 0.001 | 26.07 | 1.29 | 0.54 | 1.1 | ||
城镇建设用地 | 范围 | 6.5~12.7 | 0.11~0.16 | 9.3~13.3 | 57.4~70.7 | 19.6~26.9 | 0.020~0.537 | 453~609 | 22.7~29.5 | 20.0~30.4 | 54.4~78.9 | |
平均值 | 10.1b | 0.14a | 11.3b | 63.8b | 22.9a | 0.098a | 525b | 25.8b | 24.2a | 64.6b | ||
标准差 | 1.45 | 0.02 | 1.05 | 3.34 | 2.08 | 0.14 | 45.94 | 2.35 | 2.11 | 6.59 | ||
农村居民用地 | 范围 | 6.5~14.3 | 0.09~0.21 | 9.3~15.6 | 59.4~78.3 | 17.5~29.7 | 0.023~0.149 | 440~726 | 20.2~37.5 | 17.1~27.0 | 49.2~80.6 | |
平均值 | 10.5b | 0.13a | 11.9a | 66.7a | 23.1a | 0.041b | 572a | 28.3a | 22.7a | 66.0a | ||
标准差 | 2.20 | 0.01 | 1.70 | 4.09 | 2.97 | 0.03 | 74.69 | 4.45 | 2.32 | 7.34 | ||
土壤 母质 类型 | 海积物 | 范围 | 5.2~16.2 | 0.07~0.18 | 6.1~16.2 | 53.1~94.1 | 11.9~36.5 | 0.014~0.031 | 411~886 | 14.6~41.4 | 12.6~28.6 | 34.8~95.4 |
平均值 | 9.5b | 0.12a | 9.9b | 68.0a | 18.9b | 0.021c | 548b | 24.4b | 18.5b | 56.4b | ||
标准差 | 2.72 | 0.03 | 1.9 | 8.14 | 5.39 | 0.004 | 109.68 | 5.71 | 4.00 | 12.37 | ||
湖相沉积物 | 范围 | 7.9~17.7 | 0.08`0.24 | 8.8~16.9 | 57.1~81.9 | 15.6~36.7 | 0.017~0.055 | 464~970 | 21.6~43.4 | 17.1~28.4 | 47.9~98.6 | |
平均值 | 12.3a | 0.15a | 12.8a | 70.4a | 25.8a | 0.030b | 649a | 31.9a | 23.6a | 72.4a | ||
标准差 | 2.38 | 0.03 | 1.55 | 5.22 | 4.15 | 0.01 | 102.37 | 4.47 | 2.39 | 9.29 | ||
黄河冲积物 | 范围 | 8.4~16.9 | 0.08~0.21 | 10.3~15.5 | 60.9~77.4 | 20.6~30.7 | 0.024~0.066 | 506~743 | 25.6~36.3 | 20.9~27.8 | 58.5~85.6 | |
平均值 | 12.9a | 0.14a | 12.6a | 69.6a | 25.4a | 0.036b | 621a | 31.3a | 23.1a | 73.3a | ||
标准差 | 1.82 | 0.03 | 1.2 | 4.31 | 2.86 | 0.01 | 63.62 | 2.79 | 1.89 | 6.73 | ||
鲁中南山前 冲洪积物 | 范围 | 5.3~15.0 | 0.08~0.19 | 9.0~15.5 | 57.1~75.1 | 17.5~37.8 | 0.011~0.537 | 440~732 | 20.1~37.8 | 17.3~30.5 | 49.3~82.1 | |
平均值 | 9.6b | 0.13a | 11.7a | 65.7b | 23.5a | 0.048a | 548b | 27.1b | 23.2a | 65.1a | ||
标准差 | 1.86 | 0.02 | 1.49 | 4.09 | 3.18 | 0.05 | 64.29 | 3.63 | 2.21 | 7.41 |
表5
土壤重金属元素的变异函数模型"
模型 | 块金值 (C0) | 基台值 (C0+C) | 块金值/基台值 (C0/C0+C) | 变程 (m) | 残差 | 决定 系数 | K-S检验 (Asymp.sig.) | |
---|---|---|---|---|---|---|---|---|
As | Gaussian | 0.006 | 0.025 | 0.240 | 51373 | 0.201×10-5 | 0.993 | 0.021 |
Cd | Exponential | 0.005 | 0.012 | 0.417 | 28020 | 0.199×10-5 | 0.951 | 0.016 |
Co | Gaussian | 0.034 | 0.159 | 0.215 | 63272 | 0.111×10-3 | 0.988 | 0.327 |
Cr | Gaussian | 0.075 | 0.221 | 0.340 | 74253 | 0.183×10-3 | 0.977 | 0.206 |
Cu | Spherical | 0.110 | 0.567 | 0.194 | 84178 | 0.230×10-2 | 0.957 | 0.425 |
Hg | Exponential | 0.015 | 0.049 | 0.317 | 61470 | 0.362×10-4 | 0.958 | 0.017 |
Mn | Gaussian | 0.002 | 0.014 | 0.159 | 728846 | 0.071×10-5 | 0.987 | 0.023 |
Ni | Gaussian | 0.091 | 0.637 | 0.143 | 70183 | 0.647×10-3 | 0.995 | 0.331 |
Pb | Gaussian | 0.002 | 0.015 | 0.127 | 114974 | 0.091×10-5 | 0.940 | 0.014 |
Zn | Gaussian | 0.216 | 1.457 | 0.148 | 92468 | 0.365×10-2 | 0.987 | 0.362 |
[1] |
马建华, 王晓云, 侯千, 等. 某城市幼儿园地表灰尘重金属污染及潜在生态风险. 地理研究, 2011, 30(3): 486-495.
doi: 10.11821/yj2011030009 |
[Ma Jianhua, Wang Xiaoyun, Hou Qian, et al.Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens. Geographical Research, 2011, 30(3): 486-495.]
doi: 10.11821/yj2011030009 |
|
[2] |
吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价. 地理学报, 2012, 67(7): 109-122.
doi: 10.11821/xb201207010 |
[Lv Jianshu, Zhang Zulu, Liu Yang, et al.Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao city. Acta Geographica Sinica, 2012, 67(7): 109-122.]
doi: 10.11821/xb201207010 |
|
[3] |
戴彬, 吕建树, 战金成, 等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价. 环境科学, 2015, 36(2): 507-515.
doi: 10.13227/j.hjkX.2015.02.018 |
[Dai Bin, Lv Jianshu, Zhan Jincheng, et al.Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong province. Environmental Science, 2015, 36(2): 507-515.]
doi: 10.13227/j.hjkX.2015.02.018 |
|
[4] |
Ghrefat H, Yusuf N. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 2006, 65(11): 2114-2121.
doi: 10.1016/j.chemosphere.2006.06.043 pmid: 16875712 |
[5] |
Lv J, Zhang Z, Li S, et al.Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3): 1671-1681.
doi: 10.1007/s10967-013-2883-2 |
[6] | Alloway B J.Heavy Metals in Soils. London: Chapman and Hall, 1995. |
[7] |
董立宽, 方斌. 茶园土壤重金属乡镇尺度下空间异质性分析: 以江浙优质名茶种植园为例. 地理研究, 2017, 36(2): 391-404.
doi: 10.11821/dlyj201702016 |
[Dong Likuan, Fang Bin.Analysis of spatial heterogeneity of soil heavy metals in tea plantation: Case study of high quality tea garden in Jiangsu and Zhejiang. Geographical Research, 2017, 36(2): 391-404.]
doi: 10.11821/dlyj201702016 |
|
[8] |
Li Y, Gou X, Wang G, et al.Heavy metal contamination and source in arid agricultural soil in central Gansu province, China. Journal of Environmental Sciences, 2008, 20(5): 607-612.
doi: 10.1016/S1001-0742(08)62101-4 pmid: 18575115 |
[9] |
Yang P, Mao R, Shao H, et al.The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. Comptes Rendus Biologies, 2009, 332(6): 558-566.
doi: 10.1016/j.crvi.2009.01.004 pmid: 19520319 |
[10] |
方小红, 彭渤, 张坤, 等. 沅江下游入湖段河床沉积物重金属污染特征. 地理研究, 2016, 35(10): 1887-1898.
doi: 10.11821/dlyj201610008 |
[Fang Xiaohong, Peng Bo, Zhang Kun, et al.Heavy metal contamination of bed sediments in inlet area of the lowermost Yuanjiang river, Hunan province of China. Geographical Research, 2016, 35(10): 1887-1898.]
doi: 10.11821/dlyj201610008 |
|
[11] |
王济, 张一修, 高翔. 城市地表灰尘重金属研究进展及展望. 地理研究, 2012, 31(5): 821-830.
doi: 10.11821/yj2012050006 |
[Wang Ji, Zhang Yixiu, Gao Xiang.The advances in research on heavy metals of the surface dust in urban areas. Geographical Research, 2012, 31(5): 821-830.]
doi: 10.11821/yj2012050006 |
|
[12] |
Manta D S, Angelone M, Bellanca A, et al.Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 2002, 300(1-3): 229-243.
doi: 10.1016/S0048-9697(02)00273-5 pmid: 12685485 |
[13] |
李晓燕, 陈同斌, 雷梅, 等. 北京城市广场及校园表土(灰尘)中重金属水平与健康风险. 地理研究, 2010, 29(6): 989-996.
doi: 10.11821/yj2010060004 |
[Li Xiaoyan, Chen Tongbin, Lei Mei, et al.Concentrations and risk of heavy metals in surface soil and dust in urban squares and school campus in Beijing. Geographical Research, 2010, 29(6): 989-996.]
doi: 10.11821/yj2010060004 |
|
[14] |
Cheng S.Heavy metal pollution in China: Origin, pattern and control. Environmental Science & Pollution Research International, 2003, 10(3): 192-198.
doi: 10.1065/espr2002.11.141.1 pmid: 12846382 |
[15] |
Kachenko A G, Singh B.Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air & Soil Pollution, 2006, 169(1-4): 101-123.
doi: 10.1007/s11270-006-2027-1 |
[16] |
楚纯洁, 周金风. 平顶山矿区丘陵坡地土壤重金属分布及污染特征. 地理研究, 2014, 33(7): 1383-1392.
doi: 10.11821/dlyj201407017 |
[Chu Chunjie, Zhou Jinfeng.Distribution and pollution of soil heavy metals in hilly upland around Pingdingshan coal mining area. Geographical Research, 2014, 33(7): 1383-1392.]
doi: 10.11821/dlyj201407017 |
|
[17] |
Lu A, Wang J, Qin X, et al.Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 2012, 425(1): 66-74.
doi: 10.1016/j.scitotenv.2012.03.003 pmid: 22459886 |
[18] |
Rodríguez Martín J A, Arias M L, Grau Corbí J M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 2006, 144(3): 1001-1012.
doi: 10.1016/j.envpol.2006.01.045 pmid: 16580763 |
[19] |
Han Y M, Du P X, Cao J J, et al.Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 2006, 355(1-3): 176-186.
doi: 10.1016/j.scitotenv.2005.02.026 pmid: 15885748 |
[20] |
Tripathi R, Nayak A K, Shahid M, et al.Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geosciences, 2015, 8(12): 10693-10703.
doi: 10.1007/s12517-015-2003-4 |
[21] |
Mendlewicz J, Crisafulli C, Calati R, et al.Concentration of toxic elements in topsoils of the metropolitan area of Mexico city: A spatial analysis using ordinary kriging and indicator kriging. Revista Internacional De Contaminacion Ambiental, 2015, 31(1): 47-62.
doi: 10.1016/j.neulet.2012.03.063 pmid: 22487732 |
[22] |
Lin Y P, Chang T K, Shih C W, et al.Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology, 2002, 42(8): 900-909.
doi: 10.1007/s00254-002-0600-5 |
[23] |
Reza S K, Baruah U, Singh S K, et al.Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India. Environmental Earth Sciences, 2015, 73(9): 5425-5433.
doi: 10.1007/s12665-014-3797-1 |
[24] |
Mahmoudabadi E, Sarmadian F, Moghaddam R N.Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). International Journal of Environmental Science & Technology, 2015, 12(10): 3283-3298.
doi: 10.1007/s13762-015-0808-z |
[25] |
Zhang J, Wang Y, Liu J, et al.Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. Journal of Soils & Sediments, 2016, 16(2): 634-644.
doi: 10.1007/s11368-015-1225-0 |
[26] |
吕建树, 刘洋, 张祖陆, 等. 鲁北滨海湿地生态旅游资源开发潜力评价及开发策略. 资源科学, 2011, 33(9): 1788-1798.
doi: 10.3724/SP.J.1011.2011.00211 |
[Lv Jianshu, Liu Yang, Zhang Zulu, et al.Evaluation of exploitation potential and formulation of development strategy of eco-tourism resources in coastal wetlands of northern Shandong province. Resources Science, 2011, 33(9): 1788-1798.]
doi: 10.3724/SP.J.1011.2011.00211 |
|
[27] |
Lv J, Liu Y, Zhang Z, et al.Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 2013, 261(13): 387-397.
doi: 10.1016/j.jhazmat.2013.07.065 pmid: 23973471 |
[28] |
Håkanson L.An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 1980, 14(8): 975-1001.
doi: 10.1016/0043-1354(80)90143-8 |
[29] |
Lv J, Liu Y, Zhang Z, et al.Identifying the origins and spatial distributions of heavy metals in soils of Ju county (Eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments, 2015, 15(1): 163-178.
doi: 10.1007/s11368-014-0937-x |
[30] | 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究. 环境科学, 1991, 12(4): 12-19. |
[Wei Fusheng, Chen Jingsheng, Wu Yanyu, et al.Study on the background contents on elements of soils in China. Environmental Science, 1991, 12(4): 12-19.] | |
[31] | 国家环境保护局. GB15618-1995. 土壤环境质量标准. 北京: 中国标准出版社, 1995. |
[National Environmental Protection Agency. GB15618-1995. Environmental Quality Standard for Soils. Beijing: China Standards Press, 1995.] | |
[32] | Wilding L P.Spatial variability: Its documentation, accommodation and implication to soil surveys. In: Nielsen D R, Bouma J. Soil Spatial Variability. Wageningen: Publishing and Documentation Publishers, 1985: 166-194. |
[33] |
Nanos N, Rodríguez Martín J A. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma, 2012, 189-190(6): 554-562.
doi: 10.1016/j.geoderma.2012.06.006 |
[34] | 王关玉, 潘懋, 刘锡大, 等. 山东省土壤中元素含量与母质的关系. 北京大学学报: 自然科学版, 1992, 28(4): 475-485. |
[Wang Guanyu, Pan Mao, Liu Xida, et al.On the relationship between the concentrations of elements in soil and the types of soil-forming parent material in Shandong province, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 1992, 28(4): 475-485.] | |
[35] |
Facchinelli A, Sacchi E, Mallen L.Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 2001, 114(3): 313-324.
doi: 10.1016/S0269-7491(00)00243-8 pmid: 11584630 |
[36] |
Šajn R, Halamić J, Peh Z, et al.Assessment of the natural and anthropogenic sources of chemical elements in alluvial soils from the Drava River using multivariate statistical methods. Journal of Geochemical Exploration, 2011, 110(3): 278-289.
doi: 10.1016/j.gexplo.2011.06.009 |
[37] |
Borůvka L, Vacek O, Jehlička J.Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 2005, 128(3-4): 289-300.
doi: 10.1016/j.geoderma.2005.04.010 |
[38] |
章明奎, 王浩, 张慧敏. 浙东海积平原农田土壤重金属来源辨识. 环境科学学报, 2008, 28(10): 1946-1954.
doi: 10.3321/j.issn:0253-2468.2008.10.002 |
[Zhang Mingkui, Wang Hao, Zhang Huimin.Distinguishing different sources of heavy metals in soils on the coastal plain of Eastern Zhejiang province. Acta Scientiae Circumstantiae, 2008, 28(10): 1946-1954.]
doi: 10.3321/j.issn:0253-2468.2008.10.002 |
|
[39] | 郭伟, 孙文惠, 赵仁鑫, 等. 呼和浩特市不同功能区土壤重金属污染特征及评价. 环境科学, 2013, 34(4): 1561-1567. |
[Guo Wei, Sun Wenhui, Zhao Renxin, et al.Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Hohhot. Environmental Science, 2013, 34(4): 1561-1567.] | |
[40] | 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染. 化学进展, 2009, 21(s1): 436-457. |
[Feng Xinbin, Qiu Guangle, Fu Xuewu, et al.Mercury pollution in the environment. Progress in Chemistry, 2009, 21(s1): 436-457.] | |
[41] |
方凤满, 王起超. 土壤汞污染研究进展. 生态环境学报, 2000, 9(4): 326-329.
doi: 10.3969/j.issn.1674-5906.2000.04.019 |
[Fang Manfeng, Wang Qichao.A review on the studies on mercury pollution of soil. Ecology and Environmental Sciences, 2000, 9(4): 326-329.]
doi: 10.3969/j.issn.1674-5906.2000.04.019 |
|
[42] | 王梅, 黄标, 孙维侠, 等. 强烈人为作用下城镇周围汞的空间变异及其积累迁移规律. 土壤学报, 2011, 48(3): 506-515. |
[Wang Mei, Huang Biao, Sun Weixia, et al.Spatial variability, accumulation and transfer of Hg in soils around towns under intensive human activities in the Yangtze River Delta region, China. Acta Pedologica Sinica, 2011, 48(3): 506-515.] | |
[43] | 方明, 吴友军, 刘红, 等. 长江口沉积物重金属的分布、来源及潜在生态风险评价. 环境科学学报, 2013, 33(2): 563-569. |
[Fang Ming, Wu Youjun, Liu Hong, et al.Distribution, sources and ecological risk assessment of heavy metals in sediments of the Yangtze River estuary. Acta Scientiae Circumstantiae, 2013, 33(2): 563-569.] | |
[44] |
鲁如坤, 时正元. 我国磷矿磷肥中镉的含量及其对生态环境影响的评价. 土壤学报, 1992, 29(2): 150-157.
doi: 10.1007/BF02677083 |
[Lu Rukun, Shi Zhengyuan.Cadmium contents of rock phosphates and phosphate fertilizers of China and their effects on ecological environment. Acta Pedologica Sinica, 1992, 29(2): 150-157.]
doi: 10.1007/BF02677083 |
|
[45] |
Zhong X, Zhou S, Zhu Q, et al.Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta: A case study of Kunshan city in Jiangsu province, China. Journal of Hazardous Materials, 2011, 198(2): 13-21.
doi: 10.1016/j.jhazmat.2011.10.003 pmid: 22018863 |
[46] | 吕建树, 何华春. 江苏海岸带土壤重金属来源解析及空间分布. 环境科学, 2018, 39(6): 2853-2864. |
[Lv Jianshu, He Huachun.Identifying the origins and spatial distributions of heavy metals in soils of Jiangsu coast. Environmental Science, 2018, 39(6): 2853-2864.] | |
[47] |
Coburn T.Geostatistics for natural resources evaluation. Journal of Environmental Quality, 1997, 42(4): 437-438.
doi: 10.1080/00401706.2000.10485733 |
[48] |
梁智, 张计峰. 两种枣树矿质营养元素累积特性研究. 植物营养与肥料学报, 2011, 17(3): 688-692.
doi: 10.11674/zwyf.2011.0376 |
[Liang Zhi, Zhang Jifeng.Accumulation properties of mineral elements in two types of Chinese jujube. Journal of Plant Nutrition and Fertilizer, 2011, 17(3): 688-692.]
doi: 10.11674/zwyf.2011.0376 |
|
[49] |
Fernndez J A, Carballeira A.Evaluation of contamination, by different elements, in terrestrial mosses. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 461-468.
doi: 10.1007/s002440010198 pmid: 11525488 |
[1] | 马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6): 1233-1241. |
[2] | 林金萍, 雷军, 吴世新, 杨振, 李建刚. 新疆绿洲乡村聚落空间分布特征及其影响因素[J]. 地理研究, 2020, 39(5): 1182-1199. |
[3] | 王雪芹, 戚伟, 刘盛和. 中国小城镇空间分布特征及其相关因素[J]. 地理研究, 2020, 39(2): 319-336. |
[4] | 李晓强, 董炜华, 宋扬. 路域农田大型土壤动物对公路运营过程重金属累积的响应[J]. 地理研究, 2020, 39(12): 2842-2854. |
[5] | 李鹏, 赵敏, 艾伦·沃森, 杨鹏, 余丹. 美国荒野风景河流的空间分布特征及其对中国的启示[J]. 地理研究, 2020, 39(1): 166-185. |
[6] | 王辉, 栾维新, 康敏捷. 渤海氮污染的来源结构与污染压力空间分布[J]. 地理研究, 2020, 39(1): 186-199. |
[7] | 邓粒子, 保继刚. 中国避暑型与避寒型宜人气候的分布特征及差异[J]. 地理研究, 2020, 39(1): 41-52. |
[8] | 刘晔,王若宇,薛德升,曾经元. 中国高技能劳动力与一般劳动力的空间分布格局及其影响因素[J]. 地理研究, 2019, 38(8): 1949-1964. |
[9] | 周亮, 张亚. 中国顶尖学术型人才空间分布特征及其流动趋势——以中国科学院院士为例[J]. 地理研究, 2019, 38(7): 1749-1763. |
[10] | 梁晨霞, 王艳慧, 徐海涛, 齐文平, 程序, 赵文吉. 贫困村空间分布及影响因素分析——以乌蒙山连片特困区为例[J]. 地理研究, 2019, 38(6): 1389-1402. |
[11] | 甄江红, 王亚丰, 田圆圆, 何孙鹏, 王金礼. 城市空间扩展的生态环境效应研究——以内蒙古呼和浩特市为例[J]. 地理研究, 2019, 38(5): 1080-1091. |
[12] | 马志飞, 尹上岗, 张宇, 李在军, 吴启焰. 中国城城流动人口的空间分布、流动规律及其形成机制[J]. 地理研究, 2019, 38(4): 926-936. |
[13] | 龙飞, 刘家明, 朱鹤, 李涛. 长三角地区民宿的空间分布及影响因素[J]. 地理研究, 2019, 38(4): 950-960. |
[14] | 陈强强, 刘峰贵, 方修琦, 周强, 陈琼, 陈锐杰. 新石器时代晚期华北地区耕地重建[J]. 地理研究, 2019, 38(12): 2927-2940. |
[15] | 王硕, 蔡立梅, 王秋爽, 罗杰, 唐翠华, 穆桂珍, 蒋慧豪, 刘天勇. 中国城市地表灰尘中重金属的富集状况及空间分布特征[J]. 地理研究, 2018, 37(8): 1624-1640. |
|