地理研究 ›› 2019, Vol. 38 ›› Issue (6): 1464-1480.doi: 10.11821/dlyj020190096
荣培君1,2(), 张丽君2(
), 秦耀辰2, 李阳1,2, 郑智成2
收稿日期:
2019-01-29
修回日期:
2019-05-06
出版日期:
2019-06-20
发布日期:
2019-06-12
作者简介:
作者简介:荣培君(1986-),女,河南开封人,博士,讲师,主要研究方向为区域可持续发展。 E-mail:
基金资助:
Peijun RONG1,2(), Lijun ZHANG2(
), Yaochen QIN2, Yang LI1,2, Zhicheng ZHENG2
Received:
2019-01-29
Revised:
2019-05-06
Online:
2019-06-20
Published:
2019-06-12
摘要:
居住区是居民日常生活最基本的空间单元,其建成环境对出行碳排放的影响是学术界关注的焦点。基于大样本调查数据核算居民各类出行碳排放,通过POI抓取、空间句法、网络分析等方法识别开封市主城区成规模的248个居住区的建成环境特征,借助核密度和GWR等方法剖析居住区尺度居民各类出行碳排放的空间分异规律。结果表明:① 城市内部居民出行碳排放空间差异显著,居住区公共服务供给的公平性问题突出,外圈层快速扩张区域应作为城市碳减排工作的关键区域;② 居住区尺度能较好地揭示建成环境对出行碳排放的影响,路网设计、建筑密度、土地利用混合度等因素对各类出行碳排放的作用机理差异较大,作用强度亦存在不同方向上的空间渐进规律;③ 根据出行碳排放结构及其对应的建成环境指标可识别出外层高密度欠通达低混合型居住区碳排放水平较高,内层低密度高通达高混合型居住区碳排放水平较低。研究结果可为居住区空间重构和城市碳排放的分区规划与治理提供科学依据。
荣培君, 张丽君, 秦耀辰, 李阳, 郑智成. 建成环境对城市居民日常出行碳排放的影响——以开封市248个居住区为例[J]. 地理研究, 2019, 38(6): 1464-1480.
Peijun RONG, Lijun ZHANG, Yaochen QIN, Yang LI, Zhicheng ZHENG. Impact of built environment on carbon emissions from daily travel of urban residents: A case study of 248 residential areas in Kaifeng[J]. GEOGRAPHICAL RESEARCH, 2019, 38(6): 1464-1480.
表2
新老区居住区基本属性对比"
指标 | 分类 | 老城区(%) | 新城区(%) | 指标 | 分类 | 老城区(%) | 新城区(%) |
---|---|---|---|---|---|---|---|
住房类型 | 商品房 | 23.0 | 51.1 | 平均楼层(层) | ≤ 3 | 32.0 | 9.0 |
单位集资房 | 9.9 | 17.0 | 4~6 | 59.2 | 62.9 | ||
经济适用房 | 1.4 | 8.4 | 7~11 | 9.9 | 14.0 | ||
私人自建房 | 64.8 | 18.5 | ≥ 12 | 0.0 | 14.0 | ||
拆迁安置房 | 0.0 | 4.9 | 建造年代(年) | 1980以前 | 4.2 | 2.2 | |
建筑面积 | 50~100 | 54.9 | 26.4 | 1981—1990 | 23.9 | 7.9 | |
100~150 | 36.6 | 59.0 | 1991—2000 | 45.1 | 39.3 | ||
150~200 | 8.5 | 8.4 | 2001—2010 | 25.3 | 39.9 | ||
200以上 | 0.0 | 6.2 | 2010以后 | 1.4 | 10.7 | ||
家庭月收入(元) | ≤ 3000 | 14.1 | 1.7 | 小汽车拥有量(辆) | ≤ 0.5 | 56.3 | 21.9 |
3000~6000 | 49.3 | 27.5 | 0.5~1 | 35.2 | 61.8 | ||
6000~9000 | 26.6 | 57.3 | 1~1.5 | 7.1 | 11.2 | ||
9000~12000 | 7.0 | 13.5 | 1.5~2 | 1.4 | 5.1 |
表3
不同出行碳排放结构类型居住区的建成环境特征"
碳排放 结构类别 | 容积率 | 离市中心 距离(km) | 通达性 整合度 | 周边交叉 路口(个) | 周边公交 站点(个) | 周边学校(个) | 周边餐饮购 物设施(个) | 土地利用 混合度 |
---|---|---|---|---|---|---|---|---|
HHH | 2.96 | 6.96 | 0.13 | 18.29 | 0.96 | 1.33 | 19.95 | 1.17 |
HHM | 2.53 | 5.20 | 0.15 | 27.60 | 0.86 | 2.23 | 35.21 | 1.27 |
HHL | 2.54 | 5.56 | 0.13 | 24.36 | 1.23 | 3.02 | 55.63 | 1.18 |
HMH | 2.43 | 5.31 | 0.14 | 45.16 | 0.96 | 4.05 | 22.21 | 1.18 |
HML | 2.09 | 4.53 | 0.15 | 56.32 | 1.96 | 4.16 | 68.32 | 1.36 |
HLH | 1.89 | 5.36 | 0.15 | 42.36 | 2.58 | 6.93 | 29.65 | 1.20 |
HLM | 1.95 | 5.11 | 0.16 | 62.45 | 3.26 | 5.35 | 35.16 | 1.26 |
HLL | 1.56 | 4.95 | 0.14 | 57.13 | 3.75 | 6.87 | 75.28 | 1.39 |
MHH | 1.73 | 3.68 | 0.17 | 30.36 | 1.34 | 2.05 | 17.36 | 1.19 |
MHM | 1.62 | 4.65 | 0.19 | 28.52 | 3.65 | 2.16 | 34.26 | 1.23 |
MHL | 1.35 | 3.96 | 0.19 | 50.45 | 2.96 | 1.95 | 40.26 | 1.30 |
MMH | 1.63 | 4.87 | 0.18 | 19.93 | 2.65 | 4.13 | 36.63 | 1.20 |
MMM | 1.52 | 4.52 | 0.20 | 46.52 | 3.17 | 5.12 | 35.11 | 1.26 |
MML | 1.46 | 3.56 | 0.17 | 49.35 | 4.06 | 6.02 | 70.03 | 1.38 |
MLH | 1.53 | 3.95 | 0.21 | 51.23 | 3.12 | 3.06 | 42.69 | 1.21 |
MLM | 1.42 | 4.90 | 0.20 | 50.63 | 2.58 | 3.58 | 34.36 | 1.32 |
MLL | 1.46 | 3.68 | 0.19 | 69.11 | 3.95 | 4.06 | 69.84 | 1.35 |
LHH | 0.96 | 2.19 | 0.24 | 39.42 | 1.02 | 2.06 | 44.33 | 1.34 |
LHM | 1.09 | 2.08 | 0.23 | 40.26 | 2.69 | 1.95 | 23.63 | 1.27 |
LHL | 1.21 | 2.36 | 0.26 | 70.42 | 2.35 | 2.22 | 71.36 | 1.44 |
LMH | 1.05 | 2.05 | 0.23 | 55.26 | 3.06 | 2.16 | 39.96 | 1.20 |
LMM | 1.07 | 1.85 | 0.25 | 53.36 | 4.27 | 2.04 | 34.12 | 1.25 |
LML | 1.15 | 1.09 | 0.24 | 73.56 | 3.89 | 1.66 | 61.39 | 1.45 |
LLH | 1.18 | 2.23 | 0.23 | 85.28 | 4.62 | 6.92 | 21.96 | 1.20 |
LLM | 0.93 | 1.84 | 0.24 | 78.34 | 4.35 | 7.23 | 33.98 | 1.34 |
LLL | 0.95 | 1.95 | 0.22 | 79.49 | 4.02 | 7.12 | 72.13 | 1.48 |
表4
居民日常出行碳排放的回归结果"
影响因素 | 模型 I | 模型II | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总出行 | 通勤 | 通学 | 购物 | 休闲 | 总出行 | 通勤 | 通学 | 购物 | 休闲 | ||
家庭月收入 | - | - | 0.051 | - | - | - | - | 0.062 | - | - | |
建造年代 | 0.123 | 0.109 | - | - | 0.081 | 0.106 | 0.101 | - | - | 0.083 | |
家庭小汽车拥有量 | 0.074 | 0.095 | 0.037 | 0.060 | 0.052 | 0.083 | 0.076 | 0.043 | 0.056 | 0.054 | |
户主年龄 | -0.133 | -0.075 | -0.071 | -0.099 | -0.076 | -0.106 | -0.083 | -0.065 | -0.102 | -0.079 | |
户主学历 | - | 0.099 | - | - | 0.106 | - | 0.085 | - | - | 0.098 | |
距市中心距离 | 0.008 | 0.222 | - | 0.042 | -0.156 | ||||||
居住密度 | -0.048 | - | - | - | -0.073 | ||||||
通达性 | - | -0.056 | - | - | - | ||||||
交叉路口数 | -0.142 | -0.062 | -0.046 | - | -0.147 | ||||||
公交站点密度 | -0.108 | - | - | - | - | ||||||
土地利用混合度 | -0.106 | - | - | - | - | ||||||
餐饮购物设施密度 | - | - | - | -0.213 | - | ||||||
娱乐设施密度 | - | - | - | - | -0.164 | ||||||
教育设施密度 | -0.043 | - | -0.151 | - | -0.072 | ||||||
R2 | 0.259 | 0.247 | 0.135 | 0.142 | 0.198 | 0.716 | 0.711 | 0.580 | 0.693 | 0.535 |
[1] | 方创琳, 鲍超, 黄金川, 等. 中国城镇化发展的地理学贡献与责任使命. 地理科学, 2018, 38(3): 321-331. |
[Fang Chuanglin, Bao Chao, Huang Jinchuan, et al.Contribution, responsibility and mission of geography on China's urbanization development. Scientia Geographica Sinica, 2018, 38(3): 321-331.] | |
[2] | Zhou Q, Leng G, Huang M.Impacts of future climate change on urban flood volumes in Hohhot in northern China: Benefits of climate change mitigation and adaptations. Hydrology & Earth System Sciences, 2018, 22(1): 305-316. |
[3] | Heinonen J, Jalas M, Juntunen J K, et al.Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications are: A study of Finland. Environmental Research Letters, 2013, 8(2): 1-13. |
[4] | Heinonen J, Jalas M, Juntunen J K, et al.Situated lifestyles: II. The impacts of urban density, housing type and motorization on the greenhouse gas emissions of the middle income consumers in Finland. Environmental Research Letters, 2013, 8(3): 1402-1416. |
[5] | 荣培君, 张丽君, 杨群涛, 等. 中小城市家庭生活用能碳排放空间分异: 以开封市为例. 地理研究, 2016, 35(8): 1495-1509. |
[Rong Peijun, Zhang Lijun, Yang Quntao.Spatial differentiation patterns of carbon emissions from residential energy consumption in small and medium-sized cities: A case study of Kaifeng. Geographical Research, 2016, 35(8): 1495-1509.] | |
[6] |
Shi K, Chen Y, Li L, et al.Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective. Applied Energy, 2018, 211(12): 218-229.
doi: 10.1016/j.apenergy.2017.11.042 |
[7] | 黄经南, 高浩武, 韩笋生. 道路交通设施便利度对家庭日常交通出行碳排放的影响: 以武汉市为例. 国际城市规划, 2015, 30(3): 97-105. |
[Huang Jingnan, Gao Haowu, Han Sunsheng.The effect of traffic facilities accessibility on household commuting caused carbon emission: A case study of Wuhan city, China. Urban Planning International, 2015, 30(3): 97-105.] | |
[8] |
Xie R, Fang J, Liu C.The effects of transportation infrastructure on urban carbon emissions. Applied Energy, 2017, 196(2): 199-207.
doi: 10.1016/j.apenergy.2017.01.020 |
[9] |
Fremstad A, Underwood A, Zahran S.The environmental impact of sharing: Household and urban economies in CO2 emissions. Ecological Economics, 2018, 145(9): 137-147.
doi: 10.1016/j.ecolecon.2017.08.024 |
[10] | 申犁帆, 王烨, 张纯, 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究: 以北京市44个轨道站点为例. 地理学报, 2018, 73(12): 2423-2439. |
[Shen Lifan, Wang Ye, Zhang Chun, et al.Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: Evidence from 44 URT stations in Beijing. Acta Geographica Sinica, 2018, 73(12): 2423-2439.] | |
[11] |
Lee S, Lee B.The influence of urban form on GHG emissions in the U.S. household sector. Energy Policy, 2014, 68(1): 534-549.
doi: 10.1016/j.enpol.2014.01.024 |
[12] |
Muñiz I, Sánchez V.Urban spatial form and structure and greenhouse-gas emissions from commuting in the metropolitan zone of Mexico Valley. Ecological Economics, 2018, 147(2): 353-364.
doi: 10.1016/j.ecolecon.2018.01.035 |
[13] |
Denant-Boemont L, Gaigné Carl, Gaté Romain.Urban spatial structure, transport-related emissions and welfare. Journal of Environmental Economics and Management, 2018, 89(2): 29-45.
doi: 10.1016/j.jeem.2018.01.006 |
[14] |
Zhou C, Wang S.Examining the determinants and the spatial nexus of city-level CO2 emissions in China: A dynamic spatial panel analysis of China's cities. Journal of Cleaner Production, 2018, 171(10): 917-926.
doi: 10.1016/j.jclepro.2017.10.096 |
[15] | Jones C, Kammen D M.Spatial distribution of U.S. household carbon footprints reveals sub-urbanization undermines greenhouse gas benefits of urban population density. Environmental Science & Technology, 2014, 48(2): 895-902. |
[16] | Holtzclaw J.Using Residential Patterns and Transit to Decrease Auto Dependence and Costs. San Francisco, CA: Natural Resources Defense Council, 1994. |
[17] |
Cervero R, Gorham R.Commuting in transit versus automobile neighborhoods. Journal of the American Planning Association, 1995, 61(2): 210-225.
doi: 10.1080/01944369508975634 |
[18] | Cervero R, Kockelman K.Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D Transport & Environment, 1997, 2(3): 199-219. |
[19] | Ewing R.Travel and the built environment: A synthesis. Transportation Research Record, 2001, 1780(1): 265-294. |
[20] |
曹小曙, 杨文越, 黄晓燕. 基于智慧交通的可达性与交通出行碳排放: 理论与实证. 地理科学进展, 2015, 34(4): 418-429.
doi: 10.11820/dlkxjz.2015.04.003 |
[Cao Xiaoshu, Yang Wenyue, Huang Xiaoyan.Accessibility and CO2 emissions from travel of smart transportation: Theory and empirical studies. Progress in Geography, 2015, 34(4): 418-429.]
doi: 10.11820/dlkxjz.2015.04.003 |
|
[21] | 黄晓燕, 刘夏琼, 曹小曙. 广州市三个圈层社区居民通勤碳排放特征: 以都府小区、南雅苑小区和丽江花园为例. 地理研究, 2015, 34(4): 751-761. |
[Huang Xiaoyan, Liu Xiaqiong, Cao Xiaoshu.Commuting carbon emission characteristics of community residents of three spheres: A case study of three communities in Guangzhou city. Geographical Research, 2015, 34(4): 751-761.] | |
[22] |
Yang Y, Wang C, Liu W L.Urban daily travel carbon emissions accounting and mitigation potential analysis using surveyed individual data. Journal of Cleaner Production, 2018, 192(5): 821-834.
doi: 10.1016/j.jclepro.2018.05.025 |
[23] |
Ma J, Zhou S H, Mitchell G.CO2 emission from passenger travel in Guangzhou, China: A small area simulation. Applied Geography, 2018, 98(7): 121-132.
doi: 10.1016/j.apgeog.2018.07.015 |
[24] |
Cao X S, Yang W Y.Examining the effects of the built environment and residential self-selection on commuting trips and the related CO2 emissions: An empirical study in Guangzhou, China. Transportation Research Part D, 2017, 52(3): 480-494.
doi: 10.1016/j.trd.2017.02.003 |
[25] |
Alexander R, Christian H R, Joachim S.GHG emissions in daily travel and long-distance travel in Germany: Social and spatial correlates. Transportation Research Part D, 2016, 49(9): 25-43.
doi: 10.1016/j.trd.2016.08.029 |
[26] | 杨文越, 李涛, 曹小曙. 广州市社区出行低碳指数格局及其影响因素的空间异质性. 地理研究, 2015, 34(8): 1471-1480. |
[Yang Wenyue, Li Tao, Cao Xiaoshu.The spatial pattern of community travel low carbon index(CTLCI) and spatial heterogeneity of the relationship between CTLCI and influencing factors in Guangzhou. Geographical Research, 2015, 34(8): 1471-1480.] | |
[27] |
Tirumalachetty S, Kockelman K M, Nichols B G.Forecasting greenhouse gas emissions from urban regions: Microsimulation of land use and transport patterns in Austin, Texas. Journal of Transport Geography, 2013, 33: 220-229.
doi: 10.1016/j.jtrangeo.2013.08.002 |
[28] |
Baiocchi G, Creutzig F, Minx J, et al.A spatial typology of human settlements and their CO2 emissions in England. Global Environmental Change, 2015, 34(9): 13-21.
doi: 10.1016/j.gloenvcha.2015.06.001 |
[29] | 杨文越, 曹小曙. 居住自选择视角下的广州出行碳排放影响机理. 地理学报, 2018, 73(2): 346-361. |
[Yang Wenyue, Cao Xiaoshu.The influence mechanism of travel-related CO2 emissions from the perspective of residential self-selection: A case study of Guangzhou. Acta Geographica Sinica, 2018, 73(2): 346-361.] | |
[30] | 周素红, 宋江宇, 宋广文. 广州市居民工作日小汽车出行个体与社区双层影响机制. 地理学报, 2017, 72(8): 1444-1457. |
[Zhou Suhong, Song Jiangyu, Song Guangwen.Examining the dual-levels impact of neighbourhood and individual variables on car use on weekdays in Guangzhou. Acta Geographica Sinica, 2017, 72(8): 1444-1457.] | |
[31] | Jain D, Tiwari G.How the present would have looked like? Impact of non-motorized transport and public transport infrastructure on travel behavior, energy consumption and CO2 emissions: Delhi, Pune and Patna. Sustainable Cities & Society, 2016, 22(9): 1-10. |
[32] |
Ma J, Mitchell G, Heppenstall A.Exploring transport carbon futures using population microsimulation and travel diaries: Beijing to 2030. Transport Research: Part D, 2015, 37(5): 108-122.
doi: 10.1016/j.trd.2015.04.020 |
[33] | 柴彦威, 肖作鹏, 刘志林. 基于空间行为约束的北京市居民家庭日常出行碳排放的比较分析. 地理科学, 2011, 31(7): 843-849. |
[Chai Yanwei, Xiao Zuopeng, Liu Zhiling.Comparative analysis on CO2 emission per household in daily travel based on spatial behavior constraints. Scientia Geographica Sinica, 2011, 31(7): 843-849.] | |
[34] |
Rong P J, Zhang L J, Qin Y C, et al.Spatial differentiation of daily travel carbon emissions in small- and medium-sized cities: An empirical study in Kaifeng, China. Journal of Cleaner Production, 2018, 197(6): 1365-1373.
doi: 10.1016/j.jclepro.2018.06.205 |
[35] | 秦波, 田卉. 社区空间形态类型与居民碳排放: 基于北京的问卷调查. 城市发展研究, 2014, 21(6): 15-20. |
[Qin Bo, Tian Hui.The impact of neighborhood spatial form on household carbon emissions: Based on the study in Beijing. Urban Development Studies, 2014, 21(6): 15-20.] | |
[36] |
Jabbari M, Fonseca F, Ramos R.Combining multi-criteria and space syntax analysis to assess a pedestrian network: The case of Oporto. Journal of Urban Design. 2018, 23(1): 23-41.
doi: 10.1080/13574809.2017.1343087 |
[37] | 满洲, 赵荣钦, 袁盈超, 等. 城市居住区周边土地混合度对居民通勤交通碳排放的影响: 以南京市江宁区典型居住区为例. 人文地理, 2018, 33(1): 70-75. |
[Man Zhou, Zhao Rongqin, Yuan Yingchao, et al.Impact of land-mixing degree of residential area on carbon emissions of commuting: A case study of typical residential district, Jiangning District, Nan jing. Human Geography, 2018, 33(1): 70-75.] | |
[38] | 谢宏, 李颖灏, 韦有义. 浙江省特色小镇的空间结构特征及影响因素研究.地理科学, 2018, 38(8): 1283-1291. |
[Xie Hong, Li Yinghao, Wei Youyi.Influencing factors and spatial distribution of the characteristic towns in Zhejiang province. Scientia Geographica Sinica, 2018, 38(8): 1283-1291.] | |
[39] | 胡艳兴, 潘竟虎, 王怡睿. 基于ESDA-GWR的1997—2012年中国省域能源消费碳排放时空演变特征. 环境科学学报, 2015, 35(6): 1896-1906. |
[Hu Yanxing, Pan Jinghu, Wang Yirui.Spatial-temporal evolution of provincial carbon emission in China from 1997 to 2012 based on ESDA and GWR model. Acta Scientae Circumstantiae, 2015, 35(6): 1896-1906.] |
[1] | 王甫园, 王开泳, 虞虎, 陈田. 珠三角城市群生态游憩空间分异特征及关联性因素[J]. 地理研究, 2020, 39(9): 2148-2164. |
[2] | 杨文越, 梁斐雯, 曹小曙. 多尺度建成环境对居民通勤出行碳排放的影响——来自广州的实证研究[J]. 地理研究, 2020, 39(7): 1625-1639. |
[3] | 张延吉, 邓伟涛, 赵立珍, 李苗裔. 城市建成环境如何影响居民生理健康?——中介机制与实证检验[J]. 地理研究, 2020, 39(4): 822-835. |
[4] | 姜玉培, 甄峰, 孙鸿鹄, 王文文. 健康视角下城市建成环境对老年人日常步行活动的影响研究[J]. 地理研究, 2020, 39(3): 570-584. |
[5] | 张改素, 魏建飞, 丁志伟. 中国镇域工业化和城镇化综合水平的空间格局特征及其影响因素[J]. 地理研究, 2020, 39(3): 627-650. |
[6] | 马斌斌, 陈兴鹏, 陈芳婷, 陈艳碧, 丁博文鹏. 中华老字号企业空间分异及影响因素研究[J]. 地理研究, 2020, 39(10): 2313-2329. |
[7] | 涂心萌, 杨绪红, 张景源, 栾心晨, 宁可心. 2014—2019年中国秸秆焚烧火点的地理特征分析[J]. 地理研究, 2020, 39(10): 2379-2390. |
[8] | 陈万旭,李江风,曾杰,冉端,杨斌. 中国土地利用变化生态环境效应的空间分异性与形成机理[J]. 地理研究, 2019, 38(9): 2173-2187. |
[9] | 余国良,李建华,孙嘉欣,沈培培,杨春白雪. 基于地理探测器的中国城市男性青少年BMI影响因子探究[J]. 地理研究, 2019, 38(9): 2288-2301. |
[10] | 古恒宇,覃小玲,沈体雁. 中国城市流动人口回流意愿的空间分异及影响因素[J]. 地理研究, 2019, 38(8): 1877-1890. |
[11] | 周素红, 彭伊侬, 柳林, 林荣平, 张春霞. 日常活动地建成环境对老年人主观幸福感的影响[J]. 地理研究, 2019, 38(7): 1625-1639. |
[12] | 崔娜娜, 古恒宇, 沈体雁. 北京市住房价格和租金的空间分异与相互关系[J]. 地理研究, 2019, 38(6): 1420-1434. |
[13] | 闫梅, 李国平, 黄金川. 中国地区价格指数测度与空间分异[J]. 地理研究, 2019, 38(6): 1451-1463. |
[14] | 胡述聚, 李诚固, 张婧, 马佐澎, 刘伟. 教育绅士化社区:形成机制及其社会空间效应研究[J]. 地理研究, 2019, 38(5): 1175-1188. |
[15] | 张永明, 甄峰. 建成环境对居民购物模式选择的影响——以南京为例[J]. 地理研究, 2019, 38(2): 313-325. |
|