地理研究 ›› 2020, Vol. 39 ›› Issue (8): 1892-1906.doi: 10.11821/dlyj020190679
刘媛媛1,2(), 王绍强1,2,3(
), 王小博1,2, 江东1,2, N H Ravindranath4, Atiq Rahman5, Nyo Mar Htwe6, Tartirose Vijitpan7
收稿日期:
2019-08-08
修回日期:
2019-11-05
出版日期:
2020-08-20
发布日期:
2020-10-20
通讯作者:
王绍强
作者简介:
刘媛媛(1996-),女,河南安阳人,博士研究生,主要从事生态模拟与生态遥感相关研究。E-mail: 基金资助:
LIU Yuanyuan1,2(), WANG Shaoqiang1,2,3(
), WANG Xiaobo1,2, JIANG Dong1,2, N H Ravindranath4, Atiq Rahman5, Nyo Mar Htwe6, Tartirose Vijitpan7
Received:
2019-08-08
Revised:
2019-11-05
Online:
2020-08-20
Published:
2020-10-20
Contact:
WANG Shaoqiang
摘要:
孟印缅三国地处亚热带与热带季风气候区,因自然条件制约,洪涝灾害频繁发生,对“孟中印缅经济走廊”建设将会带来重大影响。开展孟印缅地区的洪水风险评估可为“孟中印缅经济走廊”的建设安全提供必要的信息和科技支撑。利用1980—2016年的降水数据,结合河网、数字高程和土地利用等数据,选取雨季降雨量、暴雨天数、高程、坡度、河网密度、植被覆盖度、土壤可蚀性、人口密度、地均GDP和土地利用10个指标,采用层次分析法和AHP_熵权法对孟印缅地区的洪水灾害风险分布进行了比较研究。研究表明:孟印缅地区高风险区和较高风险区分别占总面积的1.05%和28.76%,高风险区主要分布在印度北部的恒河平原、印度东北部的阿萨姆邦、孟加拉国大部分地区和缅甸南部。受自然、人口和经济条件的制约,孟加拉国是孟印缅三国中洪水风险最高的国家,高风险区和较高风险区分别占总面积的10.61%和65.87%。层次分析法和AHP_熵权法结果间的比较表明,后者比前者识别出更大范围的洪水高风险区。本研究为中国开展周边国家自然灾害的风险评估提供了有效的方法,有助于推进国家孟中印缅经济走廊的建设。
刘媛媛, 王绍强, 王小博, 江东, N H Ravindranath, Atiq Rahman, Nyo Mar Htwe, Tartirose Vijitpan. 基于AHP_熵权法的孟印缅地区洪水灾害风险评估[J]. 地理研究, 2020, 39(8): 1892-1906.
LIU Yuanyuan, WANG Shaoqiang, WANG Xiaobo, JIANG Dong, N H Ravindranath, Atiq Rahman, Nyo Mar Htwe, Tartirose Vijitpan. Flood risk assessment in Bangladesh, India and Myanmar based on the AHP weight method and entropy weight method[J]. GEOGRAPHICAL RESEARCH, 2020, 39(8): 1892-1906.
表1
洪水风险指标权重"
目标层 | 指标层 | 子指标层 | 权重 | ||
---|---|---|---|---|---|
层次分析法 | 熵权法 | 组合法 | |||
洪涝灾害 风险指数 | 危险性(0.4) | 雨季降雨量 | 0.5000 | 0.7373 | 0.590 |
暴雨天数 | 0.5000 | 0.2627 | 0.410 | ||
敏感性(0.4) | 坡度 | 0.2587 | 0.0537 | 0.190 | |
高程 | 0.3209 | 0.0234 | 0.222 | ||
土壤可蚀性 | 0.0929 | 0.2717 | 0.152 | ||
植被覆盖度 | 0.0929 | 0.3198 | 0.168 | ||
河网密度 | 0.2346 | 0.3315 | 0.267 | ||
易损性(0.2) | 人口密度 | 0.6942 | 0.0026 | 0.629 | |
地均GDP | 0.2103 | 0.0091 | 0.191 | ||
土地利用 | 0.0955 | 0.9883 | 0.180 |
表2
孟印缅三国洪水灾害风险等级比例"
风险 等级 | 孟加拉国比例(%) | 印度比例(%) | 缅甸比例(%) | 孟印缅全区比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AHP | AHP_熵权 | AHP | AHP_熵权 | AHP | AHP_熵权 | AHP | AHP_熵权 | ||||
低 | 6.60 | 7.75 | 31.99 | 31.72 | 57.61 | 57.98 | 35.56 | 35.45 | |||
较低 | 0.96 | 1.48 | 5.93 | 7.92 | 4.86 | 6.91 | 5.57 | 7.51 | |||
中等 | 11.99 | 14.28 | 30.48 | 30.31 | 17.82 | 15.78 | 27.64 | 27.23 | |||
较高 | 73.13 | 65.87 | 31.34 | 29.69 | 18.95 | 17.02 | 30.65 | 28.76 | |||
高 | 7.32 | 10.61 | 0.26 | 0.36 | 0.75 | 2.31 | 0.59 | 1.05 |
[1] | 方建, 李梦婕, 王静爱 , 等. 全球暴雨洪水灾害风险评估与制图. 自然灾害学报, 2015,24(1):1-8. |
[ Fang Jian, Li Mengjie, Wang Jingai , et al. Assessment and mapping of global fluvial flood risk. Journal of Natural Disaster, 2015,24(1):1-8.] | |
[2] |
Kellens W, Terpstra T, De M P. Perception and communication of flood risks: a systematic review of empirical research. Risk Analysis, 2013,33(1):24-49.
pmid: 22651128 |
[3] | 李琼 . 洪水灾害风险分析与评价方法的研究及改进. 武汉: 华中科技大学博士学位论文, 2012: 1-10. |
[ Li Qiong . The research and improvement of risk analysis and evaluation method on flood disaster. Wuhan: Doctoral Dissertation of Huazhong University of Science and Technology, 2012, 1-10.] | |
[4] | Lyu H M, Sun W J, Shen S L, et al. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of The Total En vironment, 2018,626:1012-1025. |
[5] | 赵思健, 张峭 . 东北三省农作物洪涝时空风险评估. 灾害学, 2013,28(3):54-60. |
[ Zhao Sijian, Zhang Qiao . Spatial-temporal risk assessment of crops caused by flood in the three northeastern provinces of China. Journal of Catastrophology, 2013,28(3):54-60.] | |
[6] | 黄崇福, 郭君, 艾福利 , 等. 洪涝灾害风险分析的基本范式及其应用. 自然灾害学报, 2013,22(4):11-23. |
[ Huang Chongfu, Guo Jun, Ai Fuli , et al. Basic paradigm of risk analysis in flood disaster and its application. Journal of Natural Disaster, 2013,22(4):11-23.] | |
[7] |
Black A R, Burns J C. Re-assessing the flood risk in Scotland. Science of the Total Environment, 2002,294(1-3):169-184.
doi: 10.1016/s0048-9697(02)00062-1 pmid: 12169005 |
[8] | Hu S, Cheng X, Zhou D, et al. GIS-based flood risk assessment in suburban areas: A case study of the Fangshan district, Beijing. Natural Hazards, 2017,87(3):1525-1543. |
[9] |
Xiao Y, Yi S, Tang Z . Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Science of the Total Environment, 2017, 599-600:1034-1046.
doi: 10.1016/j.scitotenv.2017.04.218 pmid: 28511348 |
[10] |
Kourgialas N N, Karatzas G P. A national scale flood hazard mapping methodology: The case of Greece-Protection and adaptation policy approaches. Science of the Total Environment, 2017, 601-602:441-452.
doi: 10.1016/j.scitotenv.2017.05.197 pmid: 28575822 |
[11] | Feyen L, Dankers R, Katalin Bódis, et al. Fluvial flood risk in Europe in present and future climates. Climatic Change, 2012,112(1):47-62. |
[12] | Prudhomme C, Wilby R L, Crooks S, et al. Scenario-neutral approach to climate change impact studies: Application to flood risk. Journal of Hydrology: Amsterdam, 2010,390(3-4):198-209. |
[13] |
Kazakis N, Kougias I, Patsialis T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 2015,538:555-563.
doi: 10.1016/j.scitotenv.2015.08.055 pmid: 26318691 |
[14] | 姚俊英, 朱红蕊, 南极月 , 等. 基于灰色理论的黑龙江省暴雨洪涝特征分析及灾变预测. 灾害学, 2012,27(1):59-63. |
[ Yao Junying, Zhu Hongru, Nan Jiyue , et al. Analysis of flood and disaster forecast in Heilongjiang province Based on Grey Theory. Journal of Catastrophology, 2012,27(1):59-63.] | |
[15] | 刘国庆 . 基于GIS和模糊数学的重庆市洪水灾害风险评价研究. 重庆:西南大学硕士学位论文, 2010. |
[ Liu Guoqing . The study of flood disaster risk evaluation in Chongqing based on GIS and fuzzy mathematics. Chongqing: Master Dissertation of Southwest University, 2010.] | |
[16] | Liu R, Chen Y, Wu J, et al. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stochastic Environmental Research & Risk Assessment, 2016,30(6):1-16. |
[17] | Saaty T L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci, 2008,1(1):83-98. |
[18] | Lyu H M, Shen J S, Arulrajah A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China. Sustainability, 2018,10(304):1-21. |
[19] | Wu Y, Zhong P A, Xu B, et al. Changing of flood risk due to climate and development in Huaihe River basin, China. Stochastic Environmental Research & Risk Assessment, 2017,31(4):935-948. |
[20] | Roxy M K, Ritika K, Terray P, et al. The curious case of Indian Ocean warming. Journal of Climate, 2016,27(22):8501-8509. |
[21] | Roxy M K, Ghosh S, Pathak A, et al. A threefold rise in widespread extreme rain events over central India. Nature Communications, 2017,8(708):1-11. |
[22] | Panhalkar S S, Jarag A P. Flood risk assessment of Panchganga River: Kolhapur district, Maharashtra using GIS-based multicriteria decision technique. Current Science, 2017,112(4):785-793. |
[23] | Pandey A C, Singh S K, Nathawat M S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Natural Hazards, 2010,55(2):273-289. |
[24] | RMSI, India flood risk: India's first countrywide flood risk model. https://www.rmsi.com/uploads/Services/India-FloodRisk_Jan%2015.pdf, 2019-3-1. |
[25] | Ghosh A, Kar S K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat Hazards, 2018,94(1):349-368. |
[26] | Liu J, Wang X, Zhang B, et al. Storm flood risk zoning in the typical regions of Asia using GIS technology. Natural Hazards, 2017,87(3):1691-1707. |
[27] | 史培军 . 三论灾害研究的理论与实践. 自然灾害学报, 2002,3(11):1-9. |
[ Shi Peijun . Theory on disaster science and disaster dynamics. Journal of Natural Disaster, 2002,3(11):1-9.] | |
[28] |
Goswami B N, Venugopal V, Sengupta D, et al. Increasing trend of extreme rain events over India in a warming environment. Science, 2006,314(5804):1442-1445.
doi: 10.1126/science.1132027 pmid: 17138899 |
[29] | 蒋卫国, 李京, 陈云浩 , 等. 区域洪水灾害风险评估体系(Ⅰ): 原理与方法. 自然灾害学报, 2008,17(6):53-59. |
[ Jiang Weiguo, Li Jing, Chen Yunhao , et al. Risk assessment system for regional flood disaster(I): principle and method. Journal of Natural Disaster, 2008,17(6):53-59.] | |
[30] |
Wu Y, Zhong P A, Zhang Y, et al. Integrated flood risk assessment and zonation method: A case study in Huaihe River basin, China. Natural Hazards, 2015,78(1):635-651.
doi: 10.1007/s11069-015-1737-3 |
[31] | 王彬 . 土壤可蚀性动态变化机制与土壤可蚀性估算模型. 杨凌:西北农林科技大学博士学位论文, 2013: 1-17. |
[ Wang Bin . Dynamic mechanism of soil erodibility and soil erodibility caculation model. Yanglin: Doctoral Dissertation of Northwest A&F University, 2013, 1-17.] | |
[32] | Sharply A N, Williams J R. EPIC-Erosion productivity impact calculator: 1. Model documentation. Technical Bulletin United States Department of Agriculture, 1990,1768:3-9. |
[33] |
Pan H, Qiang Z, Peijun S, et al. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Science of The Total Environment, 2018,643:171-182.
doi: 10.1016/j.scitotenv.2018.06.197 pmid: 29936160 |
[34] | 段光耀, 赵文吉, 宫辉力 . 基于遥感数据的区域洪涝风险评估改进模型. 自然灾害学报, 2012, (4):57-61. |
[ Duan Guangyao, Zhao Wenji, Gong Huili . Improved model of regional flood disaster risk assessment based on remote sensing data. Journal of Natural Disaster, 2012, (4):57-61.] | |
[35] | Dyer J S. Remarks on the analytic hierarchy process. Manage Sci, 1990,36(3):249-258. |
[36] | Saaty T L. A scaling method for priorities in hierarchical structures. J. Math. Psychol, 1977 15:234-281. |
[37] | 李帅, 魏虹, 倪细炉 , 等. 基于层次分析法和熵权法的宁夏城市人居环境质量评价. 应用生态学报, 2014,25(9):2700-2708. |
[ Li Shuai, Wei Hong, Ni Xilu , et al. Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method. Chinese Journal of Applied Ecology, 2014,25(9):2700-2708.] | |
[38] | Chen T, Jin Y, Qiu X, et al. A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods. Expert Systems with Applications, 2014,41(16):7328-7337. |
[39] | Wang T, Chen J S, Wang T, et al. Entropy weight-set pair analysis based on tracer techniques for dam leakage investigation. Nat Hazards, 2015,76:747-767. |
[40] | 张晨, 王清, 陈剑平 , 等. 金沙江流域泥石流的组合赋权法危险度评价. 岩土力学, 2011,32(3):831-836. |
[ Zhang Chen, Wang Qing, Chen Jianping , et al. Evaluation of debris flow risk in Jinsha River based on combined weight process. Rock and Soil Mechanics, 2011,32(3):831-836.] | |
[41] | Maps of India, Map of Top Ten Flood Prone Areas in India. https://www.mapsofindia.com/top-ten/geography/india-flood.html, 2013-06-20. |
[42] | Matheswaran K, Alahacoon N, Pandey R, et al. Flood risk assessment in South Asia to prioritize flood index insurance applications in Bihar, India. Geomatics Natural Hazards & Risk, 2019,10(1):26-48. |
[43] | Okazawa Y, Yeh P J F, Kanae S, et al. Development of a global flood risk index based on natural and socio-economic factors. Hydrological Sciences Journal, 2011,56(5):789-804. |
[44] | 孙亚勇, 黄诗峰, 李纪人 , 等. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用. 遥感技术与应用, 2017,32(2):282-288. |
[ Sun Yayong, Huang Shifeng, Li Jiren , et al. The downstream flood monitoring application of Myanmar Irrawaddy River based on Sentinel-1A SAR. Remote Sensing Technology and Application, 2017,32(2):282-288.] | |
[45] | Suju L, Yan C, Ming L, et al. Integrating global open geo-information for major disaster assessment: A case study of the Myanmar flood. ISPRS International Journal of Geo-Information, 2017,6(201):1-19. |
[46] | 刘稚, 黄德凯 . 地缘政治权力结构冲突下的孟中印缅经济走廊建设. 南亚研究, 2018(1):27-49. |
[ Liu Zhi, Huang Dekai . Development of the Bangladesh -China-India-Myanmar (BCIM) economic corridor within a context of structural geo-political power conflict. South Asian Studies, 2018, (1):27-49.] |
[1] | 李卫江, 温家洪, 吴燕娟. 基于PGIS的社区洪涝灾害概率风险评估——以福建省泰宁县城区为例[J]. 地理研究, 2014, 33(1): 31-42. |
[2] | 刘毅, 吴绍洪, 徐中春, 戴尔阜. 自然灾害风险评估与分级方法论探研——以山西省地震灾害风险为例[J]. 地理研究, 2011, 30(2): 195-208. |
[3] | 盛绍学,石磊,刘家福,叶金印,刘荆. 沿淮湖泊洼地区域暴雨洪涝风险评估[J]. 地理研究, 2010, 29(3): 416-422. |
[4] | 刘峰贵,马玉玲,魏本勇,张镱锂,周强,张海峰. 中国陆路交通干线自然灾害风险刍议[J]. 地理研究, 2009, 28(5): 1147-1156. |
[5] | 蒋卫国, 盛绍学, 朱晓华, 左 伟. 区域洪水灾害风险格局演变分析——以马来西亚吉兰丹州为例[J]. 地理研究, 2008, 27(3): 502-509. |
[6] | 谢华, 廖晓勇, 陈同斌, 林鉴钊. 污染农田中植物的砷含量及其健康风险评估——以湖南郴州邓家塘为例[J]. 地理研究, 2005, 24(1): 151-159. |
[7] | 赵士鹏. 闽江上游地区山洪灾害风险评估*[J]. 地理研究, 1997, 16(1): 98-103. |
|