[1] |
IPCC. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2007: 67-69.
|
[2] |
Sarhadi A, Bum D H, Ausin M C, et al. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resources Research, 2016, 52(3):2327-2349. DOI: 10.1002/2015WR018525.
doi: 10.1002/2015WR018525
|
[3] |
丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1):3-8.
|
|
[ Ding Yihui, Ren Guoyu, Shi Guangyu, et al. National assessment report of climate change(I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1):3-8.]
|
[4] |
Mishra A K, Singh V P. A review of drought concept. Journal of Hydrology, 2010, 391(1-2):202-216. DOI: 10.1016/j.jhydrol.2010.07.012.
doi: 10.1016/j.jhydrol.2010.07.012
|
[5] |
Mait R, Suman M, Verma E N K. Drought prediction using a wavelet based approach to model the temporal consequences of different types of droughts. Journal of Hydrology, 2016, 539(2):417-428. DOI: 10.1016/j.jhydrol.2016.05.042.
doi: 10.1016/j.jhydrol.2016.05.042
|
[6] |
董前进, 谢平. 水文干旱研究进展. 水文, 2014, 34(4):1-7.
|
|
[ Dong Qianjin, Xie Ping. Advances in hydrological drought research. Journal of China Hydrology, 2014, 34(4):1-7.]
|
[7] |
Romero L, Perez-Sanchez M, Lopez PA. Improvement of sustainability indicators when traditional water management changes: A case study in Alicante (Spain). AIMS Environ Sci. 2017, 4(3):502-522. DOI: 10.3934/environsci.2017.3.502.
doi: 10.3934/environsci.2017.3.502
|
[8] |
熊立华, 江聪. 考虑非一致性的渭河流域设计洪水过程线研究. 水资源研究, 2015, 4(5):109-119.
|
|
[ Xiong Lihua, Jiang Cong. Designing flood hydrograph of the Weihe River considering nonstationarity. Journal of Water Resources Research, 2015, 4(5):109-119.]. DOI: 10.12677/jwrr.2015.42013.
doi: 10.12677/jwrr.2015.42013
|
[9] |
Zou Lei, Xia Jun, Ning Like, et al. Identification of hydrological drought in Eastern China using a time-dependent drought index. Water, 2018, 10(3):315-334. DOI: 10.3390/w10030315.
doi: 10.3390/w10030315
|
[10] |
温庆志, 姚蕊, 孙鹏, 等. 变异条件下淮河流域生态径流变化特征及驱动因子. 生态学报, 2020, 40(8):2621-2635.
|
|
[ Wen Qingzhi, Yao Rui, Sun Peng. Change characteristics and driving factors in nonstationary ecological flow condition across the Huai River Basin, China. Acta Ecologica Sinica, 2020, 40(8):2621-2635.]. DOI: 10. 5846 /stxb201903080438.
doi: 10. 5846 /stxb201903080438
|
[11] |
王怡璇. 变化环境下滦河流域干旱演变驱动机制及定量评价研究. 天津: 天津大学博士学位论文, 2017: 104-141.
|
|
[ Wang Yixuan. Driving mechanism and quantitative assessment of drought in Luanhe River Basin under changing environment. Tianjin: Doctoral Dissertation of Tianjin University, 2017: 104-141.]
|
[12] |
李析男, 谢平, 李彬彬, 等. 变化环境下不同等级干旱事件发生概率的计算方法: 以无定河流域为例. 水利学报, 2014, 45(5):585-594.
|
|
[ Li Xinan, Xie Ping, Li Binbin, et al. A probability calculation method for different grade drought event under changing environment: Taking Wuding river basin as an example. Journal of Hydraulic Engineering, 2014, 45(5):585-594.]. DOI: 10.13243/j.cnki.slxb.2014.05.010.
doi: 10.13243/j.cnki.slxb.2014.05.010
|
[13] |
方伟. 多变量视角下珠江流域洪旱灾害时变风险研究. 西安: 西安理工大学博士论文, 2020: 32-34.
|
|
[ Fang Wei. Assessment time-varying risk of drought and flood from a multivariate perspective in the Pearl River Basin, China. Xian: Doctoral Dissertation of Xian University of Technology, 2020: 32-34.]
|
[14] |
Wang Y, Li J, Feng P, et al. A time-depedent drought index for non-stationary precipitation series. Water Resources Management, 2015, 29(7):5631-5647. DOI: 10.1007/s11269-015-1138-0.
doi: 10.1007/s11269-015-1138-0
|
[15] |
Javad Bazrafshan, Somayeh Hejabi. A Non-Stationary Reconnaissance Drought Index (NRDI) for drought monitoring in a changing climate. Water Resources Management, 2018, 32(8):2431-2447. DOI: 10.1007/s11269-018-1947-z.
doi: 10.1007/s11269-018-1947-z
|
[16] |
M D Mamunur Rashid, Simon Beecham. Development of a non-stationary standardized precipitation index and its application to a south Australian climate. Science of the Total Environment, 2018, 657(1):882-892. DOI: 10.1016/j.scitotenv.2018.12.052.
doi: 10.1016/j.scitotenv.2018.12.052
|
[17] |
邵进, 李毅, 宋松柏. 标准化径流指数计算的新方法及其应用. 自然灾害学报, 2014, 23(6):79-87.
|
|
[ Shao Jin, Li Yi, Song Songbai. A new standardized runoff index calculation method and its application. Journal of Natural Disasters, 2014, 23(6):79-87.]. DOI: 10.13577/j.jnd.2014.0609.
doi: 10.13577/j.jnd.2014.0609
|
[18] |
陈伏龙, 张鑫厚, 冯平, 等. 基于非一致融雪洪水的水库漫坝模糊风险分析. 水力发电学报, 2018, 37(12):22-32.
|
|
[ Chen Fulong, Zhang Xinhou, Feng Ping, et al. Fuzzy risk analysis of dam overtopping under inconsistent snowmelt floods. Journal of Hydroelectric Engineering, 2018, 37(12):22-32.]. DOI: 10.11660/slfdxb.20181203.
doi: 10.11660/slfdxb.20181203
|
[19] |
张正勇. 玛纳斯河流域产流区水文过程模拟研究. 石河子: 石河子大学博士论文, 2018: 28-29.
|
|
[ Zhang Zhengyong. Modeling hydrological processes in main runoff generating area of Manasi River Basin, Xinjiang. Shihezi: Doctoral Dissertation of Shihezi University, 2018: 28-29.]
|
[20] |
郭飞. 新疆生产建设兵团第八师石河子市统计年鉴. 北京: 中国统计出版社, 2019: 58-64.
|
|
[ Guo Fei. Shihezi Statistical Yearbook of the 8th Division of Xinjiang Production and Construction Corps. Beijing: China Statistics Press, 2019: 58-64.]
|
[21] |
王义忠. 玛纳斯河流域水利志. 石河子: 石河子水电局自治区玛管处, 2002: 23-25.
|
|
[ Wang Yizhong. Water Conservancy of the Manas River Basin. Shihezi: Shihezi Water and Electricity Bureau Autonomous Region Management Department, 2002: 23-25.]
|
[22] |
史玉光. 中国气象灾害大典:新疆卷. 北京: 气象出版社, 2006: 138-152.
|
|
[ Shi Yuguang. China Meteorological Disasters: Xinjiang Volume. Beijing: Meteorological Press, 2006: 138-152.]
|
[23] |
Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 2008, 35(2):226-236. DOI: 10.1029/2007GL032487.
doi: 10.1029/2007GL032487
|
[24] |
Rigby R A, Stasinopoulos D M. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2005, 54(3):507-554. DOI: 10.1111/j.1467-9876.2005.00510.x.
doi: 10.1111/j.1467-9876.2005.00510.x
|
[25] |
Stasinopoulos D M., Rigby R A. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R. Journal of Statistical Software, 2007, 23(7):1-46. DOI: 10.18637/jss.v023.i07.
doi: 10.18637/jss.v023.i07
|
[26] |
江聪, 熊立华. 基于GAMLSS模型的宜昌站年径流序列趋势分析. 地理学报, 2012, 67(11):1505-1514.
|
|
[ Jiang Cong, Xiong Lihua. Trend analysis for the annual discharge series of the Yangtze River at the Yichang hydrological station based on GAMLSS. Acta Geographica Sinica, 2012, 67(11):1505-1514.]. DOI: 10.11821/xb201211007.
doi: 10.11821/xb201211007
|
[27] |
Li J Z, Wang Y X, Li S F, et al. A nonstationary standardized precipitation index incorporating climate indices as covariates. Journal of Geophysical Research Atmospheres, 2016, 120(23):12082-12095. DOI: 10.1002/2015JD023920.
doi: 10.1002/2015JD023920
|
[28] |
Nelson R B. An Introduction to Copulas. New York: Springer, 1999: 671-672.
|
[29] |
Mann H B. Nonparametric tests against trend. Econometric: Journal of the Econometric Society, 1945, 13(3):245.
doi: 10.2307/1907187
|
[30] |
Kendall M G. Rank Correlation Measures. London: Charles Griffin, 1975: 505-506.
|
[31] |
郑锦涛. 气候变化驱动下玛纳斯河山区径流演变规律研究. 石河子: 石河子大学硕士论文, 2018: 19-20.
|
|
[ Zheng Jintao. Study on the law of runoff evolution in Manas river mountainous area driven by climate change. Shihezi: Mater Dissertation of Shihezi University, 2018: 19-20.]
|
[32] |
Vandenberghe S, Verhoest N E C, De Baets B. Fitting bivariates copulas to the dependence structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall. Water Resources Research, 2010, 46(1):W01512. DOI: 10.1029/2009WR007857.
doi: 10.1029/2009WR007857
|
[33] |
De Michele C, Salvadori G, Vezzoli R, et al. Mutivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resources Research, 2013, 49(10):6985-6994. DOI: 10.1002/wrcr.20551.
doi: 10.1002/wrcr.20551
|