地理研究 ›› 2022, Vol. 41 ›› Issue (3): 698-712.doi: 10.11821/dlyj020210106
蒋依依1(), 刘焱序2(
), 王宁1, 徐海滨3, 高洁1, 洪鹏飞1, 方琰1
收稿日期:
2021-02-07
接受日期:
2021-08-23
出版日期:
2022-03-10
发布日期:
2022-05-10
通讯作者:
刘焱序(1988-),男,陕西西安人,博士,讲师,研究方向为人地系统耦合与可持续发展。E-mail: yanxuliu@bnu.edu.cn作者简介:
蒋依依(1978-),女,贵州贵阳人,博士,教授,研究方向为体育旅游与奥运遗产。E-mail: yiyijiangpku@126.com
基金资助:
JIANG Yiyi1(), LIU Yanxu2(
), WANG Ning1, XU Haibin3, GAO Jie1, HONG Pengfei1, FANG Yan1
Received:
2021-02-07
Accepted:
2021-08-23
Published:
2022-03-10
Online:
2022-05-10
摘要:
旅游流是社会网络关系的一种地域表现形式,国家(地区)之间旅游流网络中心度的差异可以被理解为国家(地区)之间一种不对称的社会活动相互作用关系。面对当前研究中存在的旅游流网络中心度刻画指标不清晰、时空规律不精确、影响因素不明朗等问题,本研究构建了5个网络中心度指标,并据此分析了全球各个国家(地区)入境旅游流总体特征与空间演化规律,识别了主要地理因素对旅游流规模的影响程度变化。结果发现:2004—2019年全球入境旅游流规模增长近一倍,亚洲地区之间旅游流规模快速提升;全球大多数国家(地区)旅游影响力、向心力和辐射力提升,中国各项旅游流网络中心度指标的提升速度均处于世界前列;多数中心度指标之间显著相关,其中约束力和辐射力与其他指标相关程度较低;地理邻近性对旅游流规模有显著且稳定的影响,人口规模不仅与亲和力等指标显著相关,并且对旅游流规模的影响程度在时间序列中显著提升。研究结果体现了中国入境旅游在全球旅游流网络结构中的持续向好态势和巨大发展潜力。
蒋依依, 刘焱序, 王宁, 徐海滨, 高洁, 洪鹏飞, 方琰. 2004—2019年全球旅游流网络中心度时空演变[J]. 地理研究, 2022, 41(3): 698-712.
JIANG Yiyi, LIU Yanxu, WANG Ning, XU Haibin, GAO Jie, HONG Pengfei, FANG Yan. The spatial dynamics of global inbound tourism network centrality during 2004-2019[J]. GEOGRAPHICAL RESEARCH, 2022, 41(3): 698-712.
表1
旅游流网络中心度指标体系
指标名称 | 复杂网络属性描述 | 指标内涵 |
---|---|---|
影响力 | 特征向量中心度[ | 描述旅游目的地与其它国家(地区)的联系能力。与影响力高的客源地联系紧密、入境游客规模大的国家(地区)旅游影响力大。取值范围为0~1 |
向心力 | 克莱因伯格权威度[ | 描述旅游目的地对旅游流的吸引力。某个国家(地区)的高质量客源地(即客源地入境游客规模大)越多,则向心力越大。取值范围为0~1 |
辐射力 | 克莱因伯格枢纽度[ | 描述旅游客源地出境旅游流的辐射力。该客源地与高向心力旅游目的地联系越紧密,则辐射力越大。取值范围为0~1 |
约束力 | 伯特约束度[ | 描述旅游流的结构洞。与高质量目的地(即目的地入境游客规模大)联系紧密的区域性旅游国家(地区)更有可能成为周边低质量客源地的中转站,从而约束作用强 |
亲和力 | 平均最近邻接度[ | 描述旅游目的地之间的间接联系。与外界联系不紧密的国家(地区)与高质量目的地的邻接距离大,则亲和力低 |
[1] | 保继刚, 楚义芳. 旅游地理学(第三版). 北京: 高等教育出版社, 2012: 1-5. |
[Bao Jigang, Chu Yifang. Tourism Geography (3rd edition). Beijing: Higher Education Press, 2012: 1-5.] | |
[2] | 王兆峰. 入境旅游流与航空运输网络协同演化及差异分析: 以西南地区为例. 地理研究, 2012, 31(7): 1328-1338. |
[Wang Zaofeng. Co-evolution and disparities between inbound tourism flow and air transport network in Southwest China. Geographical Research, 2012, 31(7): 1328-1338.]. DOI: 10.11821/yj2012070015.
doi: 10.11821/yj2012070015 |
|
[3] | 郑嬗婷, 陆林, 陈浩. 长江三角洲团队旅游者区内游空间网络结构研究: 基于旅行社推荐线路. 资源科学, 2015, 37(12): 2371-2380. |
[Zheng Huiting, Lu Lin, Chen Hao. Team tourist flow spatial networks in the Yangtze River Delta based on the line recommended by travel agencies. Resources Science, 2015, 37(12): 2371-2380.]. DOI: CNKI:SUN:ZRZY.0.2015-12-007.
doi: CNKI:SUN:ZRZY.0.2015-12-007 |
|
[4] | 马斌斌, 陈兴鹏, 陈芳婷. 基于社交大数据的敦煌旅游流多尺度时空分异特征. 经济地理, 2021, 41(3): 202-212. |
[Ma Binbin, Chen Xingpeng, Chen Fangting. Multi-scale temporal and spatial differentiation characteristics of Dunhuang tourism flow based on social big data. Economic Geography, 2021, 41(3): 202-212.]. DOI: 10.15957/j.cnki.jjdl.2021.03.021.
doi: 10.15957/j.cnki.jjdl.2021.03.021 |
|
[5] |
Caldeira A M, Kastenholz E. Spatiotemporal tourist behaviour in urban destinations: A framework of analysis. Tourism Geographies, 2020, 22(1): 22-50. DOI: 10.1080/14616688.2019.1611909.
doi: 10.1080/14616688.2019.1611909 |
[6] | 董亚娟. 供需视角下入境旅游流驱动与城市目的地响应耦合关系研究: 以西安市为例. 西安: 陕西师范大学博士论文, 2012: 1. |
[Dong Yajuan. Research on the coupling relationship between inbound tourism flow drive and urban destination response from the perspective of supply and demand. Xi'an: Doctoral Dissertation of Shaanxi Normal University, 2012: 1.] | |
[7] |
Liu P, Zhang H, Zhang J, et al. Spatial-temporal response patterns of tourist flow under impulse pre-trip information search: From online to arrival. Tourism Management, 2019, 73: 105-114. DOI: 10.1016/j.tourman.2019.01.021.
doi: 10.1016/j.tourman.2019.01.021 |
[8] | 张子昂, 黄震方, 孔少君, 等. 近30年浙江省入境旅游周期波动特征及影响机制. 经济地理, 2016, 36(1): 186-193. |
[Zhang Ziang, Huang Zhenfang, Kong Shaojun, et al. The periodic and fluctuant characteristics of Zhejiang inbound tourism and its influence mechanism in recent 30 years. Economic Geography, 2016, 36(1): 186-193.]. DOI: 10.15957/j.cnki.jjdl.2016.01.026.
doi: 10.15957/j.cnki.jjdl.2016.01.026 |
|
[9] |
Wu B Q, Wu J F, Shi X T, et al. Visiting probability model: A new method for tourist volume forecasting. Asia Pacific Journal of Tourism Research, 2019, 24(12): 1155-1168. DOI: 10.15957/j.cnki.jjdl.2016.01.026.
doi: 10.15957/j.cnki.jjdl.2016.01.026 |
[10] |
Zeng B, He Y. Factors influencing Chinese tourist flow in Japan-a grounded theory approach. Asia Pacific Journal of Tourism Research, 2019, 24(1): 56-69. DOI: 10.1080/10941665.2018.1541185.
doi: 10.1080/10941665.2018.1541185 |
[11] | 梁茹, 孙根年. 中国与140个伙伴国出入境旅游市场反转及影响因素分析: 基于1995-2016年客流量数据. 陕西师范大学学报(自然科学版), 2018, 46(5): 108-119. |
[Liang Ru, Sun Gennian. Analysis of inbound and outbound tourism market reversal and influencing factors between China and 140 partner countries: Based on tourist flow data from 1995 to 2016. Journal of Shaanxi Normal University (Natural Science Edition), 2018, 46(5): 108-119.]. DOI: 10.15983/j.cnki.jsnu.2018.05.453.
doi: 10.15983/j.cnki.jsnu.2018.05.453 |
|
[12] | 林岚, 康志林, 甘萌雨, 等. 基于航空口岸的台胞大陆旅游流空间场效应分析. 地理研究, 2007, 26(2): 403-413. |
[Lin Lan, Kang Zhilin, Gan Mengyu, et al. An analysis of the spatial field effects of tourist flow of Taiwanese visiting Mainland China based on airports. Geographical Research, 2007, 26(2): 403-413.]. DOI: 10.3321/j.issn:1000-0585.2007.02.022.
doi: 10.3321/j.issn:1000-0585.2007.02.022 |
|
[13] | 陈小娟, 陈磊, 胡静, 等. 浙江省入境旅游流流量与流质演化研究. 地域研究与开发, 2015,(4): 84-88. |
[Chen Xiaojuan, Chen Lei, Hu Jing, et al. Research on the flow and quality evolution of inbound tourism in Zhejiang province. Areal Research and Development, 2015,(4): 84-88.]. DOI: 10.3969/j.issn.1003-2363.2015.04.016.
doi: 10.3969/j.issn.1003-2363.2015.04.016 |
|
[14] | 郑鹏, 马耀峰, 王洁洁, 等. 基于“推-拉”理论的美国旅游者旅华流动影响因素研究. 人文地理, 2010, (5): 112-117. |
[Zheng Peng, Ma Yaofeng, Wang Jiejie, et al. A study of the influencing factors of the inbound tourists from the U.S.A. based on "Push-pull" Theory. Human Geography, 2010, (5): 112-117.]. DOI: 10.3969/j.issn.1003-2398.2010.05.022.
doi: 10.3969/j.issn.1003-2398.2010.05.022 |
|
[15] | 刘军胜, 马耀峰. 中国主要旅游城市与入境客源国匹配度及演化格局. 经济地理, 2021, 41(4): 158-165. |
[Liu Junsheng, Ma Yaofeng. Matching degree between major tourist cities and inbound tourist source countries in China and its spatio-temporal evolution pattern. Economic Geography, 2021, 41(4): 158-165. ]. DOI: 10.15957/j.cnki.jjdl.2021.04.019.
doi: 10.15957/j.cnki.jjdl.2021.04.019 |
|
[16] | 文艳, 孙根年. 旅游服务贸易国际分工及中国角色演化研究. 经济管理, 2020, 42(9): 111-126. |
[Wen Yan, Sun Gennian. Study on the international division of labor in tourism service trade and the evolution of China's role. Business Management Journal, 2020, 42(9): 111-126.]. DOI: 10.19616/j.cnki.bmj.2020.09.007.
doi: 10.19616/j.cnki.bmj.2020.09.007 |
|
[17] | 殷杰, 郑向敏, 李实. 合作态势与权力角色: “一带一路”沿线国家旅游合作网络解构. 经济地理, 2019, 39(7): 216-224. |
[Yin Jie, Zheng Xiangmin, Li Shi. Cooperation situation and power role: Deconstruction of tourism cooperation network of countries along the Belt and Road initiative. Economic Geography, 2019, 39(7): 216-224.]. DOI: 10.15957/j.cnki.jjdl.2019.07.024.
doi: 10.15957/j.cnki.jjdl.2019.07.024 |
|
[18] | 李中建, 孙根年. 中美英德法出境旅游国际影响力比较: 基于经济视角的时空分析. 资源科学, 2019, 41(5): 919-930. |
[Li Zhongjian, Sun Gennian. International influences of outbound tourism from China, the United States, the United Kingdom, Germany, and France: Spatiotemporal analysis based on economic perspective. Resources Science, 2019, 41(5): 919-930.]. DOI: 10.18402/resci.2019.05.09.
doi: 10.18402/resci.2019.05.09 |
|
[19] |
张子昂, 保继刚. 多重距离对中国入境与出境旅游流的影响: 基于组态的视角. 地理科学, 2021, 41(1): 13-21.
doi: 10.13249/j.cnki.sgs.2021.01.002 |
[Zhang Ziang, Bao Jigang. Effects of multiple distances on inbound and outbound tourism flows in China: A configuration-based perspective. Scientia Geographica Sinica, 2021, 41(1): 13-21.]. DOI: 10.13249/j.cnki.sgs.2021.01.002.
doi: 10.13249/j.cnki.sgs.2021.01.002 |
|
[20] | 杨旸, 刘宏博, 李想. 文化距离对旅游目的地选择的影响: 以日本和中国大陆出境游为例. 旅游学刊, 2016, 31(10): 45-55. |
[Yang Yang, Liu Hongbo, Li Xiang. The influence of national cultural distance on international destination choice of Japanese and Chinese residents. Tourism Tribune, 2016, 31(10): 45-55.]. DOI: 10.3969/j.issn.1002-5006.2016.10.015.
doi: 10.3969/j.issn.1002-5006.2016.10.015 |
|
[21] | 曹晶晶, 章锦河, 周珺, 等. “远方”有多远? 感知距离对旅游目的地选择行为影响的研究进展. 旅游学刊, 2018, 33(7): 103-118. |
[Cao Jingjing, Zhang Jinhe, Zhou Jun, et al. How far is “far”? Progress and implications in tourism and cognitive distance research. Tourism Tribune, 2018, 33(7): 103-118.]. DOI: 10.3969/j.issn.1002-5006.2018.07.016.
doi: 10.3969/j.issn.1002-5006.2018.07.016 |
|
[22] |
Accetturo A, Cascarano M, Degasperi P, et al. The effects of common culture and language on economic exchanges: Vidence from tourist flows. Regional Studies, 2019, 53(11): 1575-1590. DOI: 10.1080/00343404.2019.1593344.
doi: 10.1080/00343404.2019.1593344 |
[23] | 王亚辉, 吴云超. 签证制度与入境游客流: 基于引力模型的实证研究. 旅游科学, 2017, 31(5): 17-31. |
[Wang Yahui, Wu Yunchao. Visa regulations and flows of inbound visitors: A gravity-model-based empirical study. Tourism Science, 2017, 31(5): 17-31.]. DOI: 10.16323/j.cnki.lykx.2017.05.002.
doi: 10.16323/j.cnki.lykx.2017.05.002 |
|
[24] | 刘祥艳, 蒋依依, 吕兴洋, 等. 签证便利度对出境旅游的影响: 基于面板数据的实证分析. 旅游学刊, 2018, 33(12): 46-52. |
[Liu Xiangyan, Jiang Yiyi, Lu Xingyang, et al. The impact of visa facilitation on outbound tourism: An empirical analysis based on panel data. Tourism Tribune, 2018, 33(12): 46-52.]. DOI: 10.3969/j.issn.1002-5006.2018.12.012.
doi: 10.3969/j.issn.1002-5006.2018.12.012 |
|
[25] | 周芳如, 吴晋峰, 吴潘, 等. 中国主要入境旅游城市交通通达性对比研究. 旅游学刊, 2016, 31(2): 12-22. |
[Zhou Fangru, Wu Jinfeng, Wu Pan, et al. Comparative research on the transportation accessibility of main inbound tourism cities in China. Tourism Tribune, 2016, 31(2): 12-22.]. DOI: 10.3969/j.issn.1002-5006.2016.02.007.
doi: 10.3969/j.issn.1002-5006.2016.02.007 |
|
[26] |
Luo D. How does the international tourism evolve in the past twenty years? Asia Pacific Journal of Tourism Research, 2021, 26(1): 59-71. DOI: 10.1080/10941665.2020.1859570.
doi: 10.1080/10941665.2020.1859570 |
[27] |
Nistor M M, Nicula A S. Application of GIS technology for tourism flow modelling in the United Kingdom. Geographia Technica, 2021, 16(1): 1-12. DOI: 10.21163/GT_2021.161.01.
doi: 10.21163/GT_2021.161.01 |
[28] | 王凯, 甘畅, 杨亚萍, 等. 长江中游城市群市域旅游经济网络结构演变及其驱动因素. 地理与地理信息科学, 2019, 35(5): 118-125. |
[Wang Kai, Gan Chang, Yang Yaping, et al. Evolution and driving factors of urban tourism economic network structure in urban agglomeration in the middle reaches of the Yangtze River. Geography and Geo-Information Science, 2019, 35(5): 118-125.].DOI: 10.3969/j.issn.1672-0504.2019.05.019.
doi: 10.3969/j.issn.1672-0504.2019.05.019 |
|
[29] | 王俊, 徐金海, 夏杰长. 中国区域旅游经济空间关联结构及其效应研究: 基于社会网络分析. 旅游学刊, 2017, 32(7): 15-26. |
[Wang Jun, Xu Jinhai, Xia Jiechang. Study on the spatial correlation structure of China's tourism economic and its effect: Based on social network analysis. Tourism Tribune, 2017, 32(7): 15-26.]. DOI: 10.3969/j.issn.1002-5006.2017.07.007.
doi: 10.3969/j.issn.1002-5006.2017.07.007 |
|
[30] | 王永明, 王美霞, 吴殿廷, 等. 基于ZINB模型的中国省域间入境旅游流影响因素. 经济地理, 2018, 38(11): 234-240. |
[Wang Yongming, Wang Meixia, Wu Dianting, et al. Determinants of inbound tourism flows between provinces in China based on ZINB model. Economic Geography, 2018, 38(11): 234-240.]. DOI: 10.15957/j.cnki.jjdl.2018.11.028.
doi: 10.15957/j.cnki.jjdl.2018.11.028 |
|
[31] | 李磊, 陆林, 穆成林, 等. 高铁网络化时代典型旅游城市旅游流空间结构演化: 以黄山市为例. 经济地理, 2019, 39(5): 207-216. |
[Li Lei, Lu Lin, Mu Chenglin, et al. Spatial structure evolution of tourist flow in typical tourist cities in the period of high-speed rail networking: A case study of Huangshan City. Economic Geography, 2019, 39(5): 207-216.]. DOI: 10.15957/j.cnki.jjdl.2019.05.024.
doi: 10.15957/j.cnki.jjdl.2019.05.024 |
|
[32] |
Prandi C, V Nisi, Ribeiro M, et al. Sensing and making sense of tourism flows and urban data to foster sustainability awareness: A real-world experience. Journal of Big Data, 2021, 8(1): 1-25. DOI: 10.1186/s40537-021-00442-w.
doi: 10.1186/s40537-021-00442-w |
[33] |
Seok H, Barnett G A, Nam Y. A social network analysis of international tourism flow. Quality & Quantity: International Journal of Methodology, 2021, 55(2): 419-439. DOI: 10.1007/S11135-020-01011-8.
doi: 10.1007/S11135-020-01011-8 |
[34] |
Liu S, Zhang J, Liu P, et al. Discovering spatial patterns of tourist flow with multi-layer transport networks. Tourism Geographies, 2021, 23(3): 1-23. DOI: 10.1080/14616688.2020.1850849.
doi: 10.1080/14616688.2020.1850849 |
[35] |
Saayman A, Klerk J D. Forecasting tourist arrivals using multivariate singular spectrum analysis. Tourism Economics, 2019, 25(3): 330-354. DOI: 10.1177/1354816618768318.
doi: 10.1177/1354816618768318 |
[36] | 张瑛, 赵建峰. 旅游流时空卡口与系统仿真实验预测: 一种景区日常环境容量主动适应性管理方法. 旅游学刊, 2020, 35(9): 57-66. |
[Zhang Ying, Zhao Jianfeng. Integrating spatio-temporal bayonet of tourist flows by using system simulation experiment: An active adaptive management method for daily tourism environment carrying capacity. Tourism Tribune, 2020, 35(9): 57-66.]. DOI: 10.19765/j.cnki.1002-5006.2020.09.010.
doi: 10.19765/j.cnki.1002-5006.2020.09.010 |
|
[37] |
Li Y F, Cao H. Prediction for tourism flow based on LSTM neural network. Procedia Computer Science, 2018, 129: 277-283. DOI: 10.1016/j.procs.2018.03.076.
doi: 10.1016/j.procs.2018.03.076 |
[38] |
胡志丁, 陆大道, 杜德斌, 等. 未来十年中国地缘政治学重点研究方向. 地理研究, 2017, 36(2): 205-214.
doi: 10.11821/dlyj201702001 |
[Hu Zhiding, Lu Dadao, Du Debin, et al. Key research direction of China's geopolitics in the next decade. Geographical Research, 2017, 36(2): 205-214.]. DOI: 10.11821/dlyj201702001.
doi: 10.11821/dlyj201702001 |
|
[39] |
Jørgensen M T, Law R, King B E. Understanding the past, anticipating the future: A critical assessment of China outbound tourism research. Journal of Travel & Tourism Marketing, 2017, 34(7): 880-891. DOI: 10.1080/10548408.2016.1220889.
doi: 10.1080/10548408.2016.1220889 |
[40] |
Dai B, Jiang Y, Yang L, et al. China's outbound tourism-stages, policies and choices. Tourism Management, 2017, 58: 253-258. DOI: 10.1016/j.tourman.2016.03.009.
doi: 10.1016/j.tourman.2016.03.009 |
[41] | 李磊, 陆林, 孙小龙, 等. 高铁沿线旅游流网络结构及其互动关系研究: 以合福高铁沿线地区为例. 人文地理, 2020, 35(1): 132-140. |
[Li Lei, Lu Lin, Sun Xiaolong, et al. Study on the network structure and interactive relationship of tourism flow along high-speed railway: An example of Hefei-Fuzhou high-speed railway. Human Geography, 2020, 35(1): 132-140.]. DOI: 10.13959/j.issn.1003-2398.2020.01.015.
doi: 10.13959/j.issn.1003-2398.2020.01.015 |
|
[42] | 蔚海燕, 戴泽钒, 许鑫, 等. 上海迪士尼对上海旅游流网络的影响研究: 基于驴妈妈游客数字足迹的视角. 旅游学刊, 2018, 33(4): 33-45. |
[Wei Haiyan, Dai Zefan, Xu Xin, et al. The impact of Shanghai Disneyland on Shanghai's tourist flow network: From the perspective of tourists′ digital footprints on the Lvmama Website. Tourism Tribune, 2018, 33(4): 33-45.]. DOI: 10.3969/j.issn.1002-5006.2018.04.009.
doi: 10.3969/j.issn.1002-5006.2018.04.009 |
|
[43] | 马丽君, 肖洋. 典型城市居民国内旅游流网络结构特征. 经济地理, 2018, 38(2): 197-205. |
[Ma Lijun, Xiao Yang. The structure characteristics of domestic tourist flow network in typical urban dweller. Economic Geography, 2018, 38(2): 197-205.]. DOI: 10.15957/j.cnki.jjdl.2018.02.025.
doi: 10.15957/j.cnki.jjdl.2018.02.025 |
|
[44] | 张妍妍, 李君轶, 杨敏. 基于旅游数字足迹的西安旅游流网络结构研究. 人文地理, 2014, 29(4): 111-118. |
[Zhang Yanyan, Li Junyi, Yang Min. The tourism flow network structure of Xi'an based on tourism digital footprint. Human Geography, 2014, 29(4): 111-118.]. DOI: 10.13959/j.issn.1003-2398.2014.04.047.
doi: 10.13959/j.issn.1003-2398.2014.04.047 |
|
[45] |
Simpson B, Markovsky B, Steketee M, et al. Network knowledge and the use of power. Social Networks, 2011, 33(2): 172-176. DOI: 10.1016/j.socnet.2010.10.008.
doi: 10.1016/j.socnet.2010.10.008 |
[46] |
Gomez D, Gonzalezaranguena E, Manuel C, et al. Centrality and power in social networks: A game theoretic approach. Mathematical Social Sciences, 2003, 46(1): 27-54. DOI: 10.1016/S0165-4896(03)00028-3.
doi: 10.1016/S0165-4896(03)00028-3 |
[47] |
Abbasi A, Jalili M, Sadeghiniaraki A, et al. Influence of network-based structural and power diversity on research performance. Scientometrics, 2018, 117(1): 579-590. DOI: 10.1007/s11192-018-2879-3.
doi: 10.1007/s11192-018-2879-3 |
[48] |
宋琼, 赵新正, 李同昇, 等. 多重城市网络空间结构及影响因素: 基于有向多值关系视角. 地理科学进展, 2018, 37(9): 1257-1267.
doi: 10.18306/dlkxjz.2018.09.008 |
[Song Qiong, Zhao Xinzheng, Li Tongsheng, et al. 2018. Spatial structures and influencing factors of multiple urban networks based on the perspective of directed-multivalued relation. Progress in Geography, 2018, 37(9): 1257-1267.]. DOI: 10.18306/dlkxjz.2018.09.008.
doi: 10.18306/dlkxjz.2018.09.008 |
|
[49] |
Bonacich P. Power and centrality: A family of measures. American Journal of Sociology, 1987, 92(5): 1170-1182. DOI: 10.1086/228631.
doi: 10.1086/228631 |
[50] |
Kleinberg J. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604-632. DOI: 10.1145/324133.324140.
doi: 10.1145/324133.324140 |
[51] |
Burt R S. Structural holes and good ideas. American Journal of Sociology, 2004, 110(2): 349-399. DOI: 10.1086/421787.
doi: 10.1086/421787 |
[52] |
Barrat A, Barthelemy M, Pastorsatorras R, et al. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(11): 3747-3752. DOI: 0.1073/pnas.0400087101.
doi: 0.1073/pnas.0400087101 |
[53] |
刘承良, 桂钦昌, 段德忠, 等. 全球科研论文合作网络的结构异质性及其邻近性机理. 地理学报, 2017, 72(4): 737-752.
doi: 10.11821/dlxb201704014 |
[Liu Chengliang, Gui Qinchang, Duan Dezhong, et al. Structural heterogeneity and proximity mechanism of global scientific collaboration network based on co-authored papers. Acta Geographica Sinica, 2017, 72(4): 737-752.]. DOI: 10.11821/dlxb201704014.
doi: 10.11821/dlxb201704014 |
|
[54] | 鲜果, 曾刚, 曹贤忠. 中国城市间创新网络结构及其邻近性机理. 世界地理研究, 2018, 27(5): 136-146. |
[Xian Guo, Zeng Gang, Cao Xianzhong. Structural feature and proximity mechanism of Chinese intercity innovation network. World Regional Studies, 2018, 27(5): 136-146.]. DOI: 10.3969/j.issn.1004-9479.2018.05.014.
doi: 10.3969/j.issn.1004-9479.2018.05.014 |
|
[55] |
张翼鸥, 谷人旭, 马双. 中国城市间技术转移的空间特征与邻近性机理. 地理科学进展, 2019, 38(3): 370-382.
doi: 10.18306/dlkxjz.2019.03.007 |
[Zhang Yiou, Gu Renxu, Ma Shuang. Spatial characteristics and proximity mechanism of technology transfer among cities in China. Progress in Geography, 2019, 38(3): 370-382.]. DOI: 10.18306/dlkxjz.2019.03.007.
doi: 10.18306/dlkxjz.2019.03.007 |
|
[56] |
顾伟男, 刘慧, 王亮. “一带一路”沿线国家科研合作网络的多元结构及形成机制. 地理研究, 2020, 39(5): 1070-1087.
doi: 10.11821/dlyj020190376 |
[Gu Weinan, Liu Hui, Wang Liang. The multiple structure and formation mechanisms of the scientific collaboration network in the Belt and Road regions. Geographical Research, 2020, 39(5): 1070-1087.]. DOI: 10.11821/dlyj020190376.
doi: 10.11821/dlyj020190376 |
|
[57] |
汪德根, 陈田, 陆林, 等. 区域旅游流空间结构的高铁效应及机理: 以中国京沪高铁为例. 地理学报, 2015, 70(2): 214-233.
doi: 10.11821/dlxb201502004 |
[Wang Degen, Chen Tian, Lu Lin, et al. Mechanism and HSR effect of spatial structure of regional tourist flow: Case study of Beijing-Shanghai HSR in China. Acta Geographica Sinica, 2015, 70(2): 214-233.]. DOI: 10.11821/dlxb201502004
doi: 10.11821/dlxb201502004 |
|
[58] | 朱晓翔. 中国与“海上丝绸之路”国家间旅游流双向互动关系分析. 太平洋学报, 2017, 25(8): 81-93. |
[Zhu Xiaoxiang. Study on the mutual interaction of tourism markets between China and other maritime Silk Road countries. Pacific Journal, 2017, 25(8): 81-93.]. DOI: 10.14015/j.cnki.1004-8049.2017.8.008.
doi: 10.14015/j.cnki.1004-8049.2017.8.008 |
|
[59] | 温晓金, 蒋依依, 刘焱序. “一带一路”国家入境游客规模演化规律与中国出境游客的对应特征. 资源科学, 2019, 41(5): 931-942. |
[Wen Xiaojin, Jiang Yiyi, Liu Yanxu. Inbound tourism from destination countries in the “Belt and Road” region and corresponding outbound tourism from China during 2001 to 2015. Resources Science, 2019, 41(5): 931-942.]. DOI: 10.18402/resci.2019.05.10.
doi: 10.18402/resci.2019.05.10 |
|
[60] | 曾兴. 中国与南亚国家贸易畅通的影响因素及潜力实证研究. 南亚研究季刊, 2020, (3): 32-40. |
[Zeng Xing. An empirical study on the influencing factors and potentials of unimpeded trade between China and South Asian countries. South Asian Studies Quarterly, 2020, (3): 32-40.]. DOI: 10.13252/j.cnki.sasq.2020.03.05.
doi: 10.13252/j.cnki.sasq.2020.03.05 |
|
[61] | 梁双陆, 申涛. 中国-中南半岛经济走廊沿线国家经济关联与增长的空间溢出效应. 亚太经济, 2019, (5): 24-31. |
[Liang Shuanglu, Shen Tao. Economic association and spatial spillover effects of China-Indochina peninsula economic corridor countries. Asia-Pacific Economic Review, 2019, (5): 24-31.]. DOI: 10.16407/j.cnki.1000-6052.20191025.001.
doi: 10.16407/j.cnki.1000-6052.20191025.001 |
|
[62] |
陆林, 张清源, 黄剑锋, 等. 基于全球地方化视角的旅游地演化理论探讨与展望. 地理学报, 2021, 76(6): 1504-1520.
doi: 10.11821/dlxb202106013 |
[Lu Lin, Zhang Qingyuan, Huang Jianfeng, et al. A theoretical research and prospect of tourism destination evolution based on a glocalization perspective. Acta Geographica Sinica, 2021, 76(6): 1504-1520.]. DOI: 10.11821/dlxb202106013.
doi: 10.11821/dlxb202106013 |
|
[63] |
Fang Y, Zhu L, Jiang Y, et al. The immediate and subsequent effects of public health interventions for COVID-19 on the leisure and recreation industry. Tourism Management, 2021, 87(1): 104393. DOI: 10.1016/J.TOURMAN.2021.104393.
doi: 10.1016/J.TOURMAN.2021.104393 |
[64] |
Yongquan L, Rui L, Wenqi R, et al. Research of the effect of tourism economic contact on the efficiency of the tourism industry. Sustainability, 2020, 12(14): 5652. DOI: 10.3390/su12145652.
doi: 10.3390/su12145652 |
[65] |
Papatheodorou A. A review of research into air transport and tourism: Launching the annals of tourism research curated collection on air transport and tourism. Annals of Tourism Research, 2021, 87: 103151. DOI: 10.1016/j.annals.2021.103151.
doi: 10.1016/j.annals.2021.103151 |
[66] |
郭向阳, 穆学青, 明庆忠, 等. 旅游地快速交通优势度与旅游流强度的空间耦合分析. 地理研究, 2019, 38(5): 1119-1135.
doi: 10.11821/dlyj020181347 |
[Guo Xiangyang, Mu Xueqing, Ming Qingzhong, et al. Spatial coupling between rapid traffic superiority degree and tourist flow intensity in tourist destinations. Geographical Research, 2019, 38(5): 1119-1135.]. DOI: 10.11821/dlyj020181347.
doi: 10.11821/dlyj020181347 |
|
[67] |
Kc A, Hjk B, Ck C. Evaluating the efficiency of Korean festival tourism and its determinants on efficiency change: Parametric and non-parametric approaches. Tourism Management, 2021, 86: 104348. DOI: 10.1016/J.TOURMAN.2021.104348.
doi: 10.1016/J.TOURMAN.2021.104348 |
[68] |
Nguyen J, Valadkhani A. Dynamic responses of tourist arrivals in Australia to currency fluctuations. Journal of Hospitality and Tourism Management, 2020, 45: 71-78. DOI: 10.1016/j.jhtm.2020.07.003.
doi: 10.1016/j.jhtm.2020.07.003 |
[69] |
Zheng Y, Mou N, Zhang L, et al. Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data. Computers, Environment and Urban Systems, 2021, 85: 101561. DOI: 10.1016/j.compenvurbsys.2020.101561.
doi: 10.1016/j.compenvurbsys.2020.101561 |
[70] | 宋瑞. 经济新发展格局下促进旅游消费的思路与方向. 旅游学刊, 2021, 36(1): 3-5. |
[Song Rui. Ideas and directions for promoting tourism consumption in the new economic development pattern. Journal of Tourism, 2021, 36(1): 3-5.]. DOI: 10.19765/j.cnki.1002-5006.2021.01.002.
doi: 10.19765/j.cnki.1002-5006.2021.01.002 |
[1] | 曹湛, 戴靓, 吴康, 彭震伟. 全球城市知识合作网络演化的结构特征与驱动因素[J]. 地理研究, 2022, 41(4): 1072-1091. |
[2] | 毛熙彦, 贺灿飞. 环境经济地理学的研究现状与挑战[J]. 地理研究, 2022, 41(1): 4-17. |
[3] | 桂钦昌, 杜德斌, 刘承良, 徐伟, 侯纯光, 焦美琪, 翟晨阳, 卢函. 全球城市知识流动网络的结构特征与影响因素[J]. 地理研究, 2021, 40(5): 1320-1337. |
[4] | 焦美琪, 杜德斌, 桂钦昌, 侯纯光. “一带一路”视角下城市技术合作网络演化特征与影响因素研究[J]. 地理研究, 2021, 40(4): 913-927. |
[5] | 谢玉欢, 贺灿飞. 地方集群网络、信息溢出效应与中国ICT产品出口地理网络扩张[J]. 地理研究, 2021, 40(3): 689-707. |
[6] | 王列辉, 张楠翌, 林羽珊. 全球高端航运服务业的时空演化及影响因素分析[J]. 地理研究, 2021, 40(3): 708-724. |
[7] | 姚作林, 金凤君, 陈卓. 全球产业转移与GVC区域竞争——基于中国与中南半岛四国的分析[J]. 地理研究, 2021, 40(2): 326-342. |
[8] | 陈蕊, 刘逸. 全球生产网络(GPN)的理论问题和中国实践启示[J]. 地理研究, 2021, 40(12): 3259-3271. |
[9] | 王璐玮, 汪涛, 张晗. 全球生产网络与本土创新网络的战略耦合动态——以中国生物医药产业为例[J]. 地理研究, 2021, 40(12): 3314-3332. |
[10] | 周进, 黄耿志. 经济全球化下中国经济升级对社会升级的影响[J]. 地理研究, 2021, 40(12): 3364-3381. |
[11] | 王翔宇, 叶玉瑶, 吴康敏, 黄耿志, 王洋, 张虹鸥. 贸易保护与知识产权影响下中国电子通信产业参与全球分工的时空演化[J]. 地理研究, 2021, 40(12): 3399-3419. |
[12] | 沈静, 王毅斌, 曹媛媛. 从全球到地方:东莞家具产业的绿色化升级路径[J]. 地理研究, 2021, 40(12): 3455-3469. |
[13] | 吴頔, 丁婧, 袁丰. 政府能动性对外部冲击型战略耦合断裂的暂时性调节研究——以江苏省昆山市为例[J]. 地理研究, 2021, 40(12): 3470-3482. |
[14] | 陈肖飞, 韩腾腾, 赵梓渝, 苗长虹. 劳动力视角下跨国公司地方嵌入与区域发展战略耦合机制——以富士康郑州投资为例[J]. 地理研究, 2021, 40(12): 3483-3496. |
[15] | 李磊, 陶卓民, 陆林, 孙小龙, 刘红兰. 贵州省避暑旅游流网络结构特征及其影响因素[J]. 地理研究, 2021, 40(11): 3208-3224. |
|