地理研究 ›› 2022, Vol. 41 ›› Issue (7): 1932-1947.doi: 10.11821/dlyj020210787
乔治1(), 贺曈1, 卢应爽1, 孙宗耀2, 徐新良3, 杨俊4(
)
收稿日期:
2021-09-06
接受日期:
2022-01-19
出版日期:
2022-07-10
发布日期:
2022-07-07
通讯作者:
杨俊(1978-),男,湖北孝昌人,博士,教授,研究方向为土地利用变化、人居环境。E-mail: yangjun@lnnu.edu.cn作者简介:
乔治(1986-),男,山东滕州人,博士,副教授,研究方向为GIS和遥感应用、土地利用变化、城市热环境。E-mail: qiaozhi@tju.edu.cn
基金资助:
QIAO Zhi1(), HE Tong1, LU Yingshuang1, SUN Zongyao2, XU Xinliang3, YANG Jun4(
)
Received:
2021-09-06
Accepted:
2022-01-19
Published:
2022-07-10
Online:
2022-07-07
摘要:
近年来全球气候变化已经影响到人类生活的所有地区,气候系统变化的规模和现状是数千年来前所未有的。与此同时,中国城镇化进程显著加快,尤其以城市建设用地扩张主导的土地城镇化最为突出,导致城市热环境脆弱性加剧。已有研究探索了特定类型土地利用变化对于城市热环境的影响,但忽视了全球气候变化背景下自然气候和人类活动共同作用城市热环境变化的双重过程。因此,本研究提出一种基于土地利用类型的城市热环境变化贡献度算法,旨在厘清自然气候(表征为土地利用平均温度变化)和人类活动(表征为土地利用类型转变)对于区域热环境变化的单独贡献。本研究使用中分辨率成像光谱仪(Moderate-Resolution Imaging Spectroradiometer,MODIS)地表温度及发射率数据,定量计算2005—2020年四季和昼夜京津冀城市群各城市土地利用类型平均温度和面积变化对于城市热环境变化的分别贡献。该算法计算各城市四季和昼夜地表温度变化与MODIS LST产品误差在1 K以内。2005—2020年各城市地表平均温度大多数呈增长态势,其中冬季白天增温幅度最高。耕地、城市建设用地和农村居民点对城市热环境变化的贡献度较其他土地利用类型突出。京津冀城市群中各城市人类活动对城市热环境变化的单位贡献强度远高于自然气候(4.03~648.07倍),而人类活动的贡献总量(-0.25~0.92 K)低于自然气候(-2.40~6.50 K)。研究结果对于京津冀城市群空间协同发展和适应及减缓气候变化等具有重要的科学意义和实践价值。
乔治, 贺曈, 卢应爽, 孙宗耀, 徐新良, 杨俊. 全球气候变化背景下基于土地利用的人类活动对城市热环境变化归因分析——以京津冀城市群为例[J]. 地理研究, 2022, 41(7): 1932-1947.
QIAO Zhi, HE Tong, LU Yingshuang, SUN Zongyao, XU Xinliang, YANG Jun. Quantifying the contribution of land use change based on the effects of global climate change and human activities on urban thermal environment in the Beijing-Tianjin-Hebei urban agglomeration[J]. GEOGRAPHICAL RESEARCH, 2022, 41(7): 1932-1947.
表1
2005—2020年自然气候与人类活动对城市热环境变化的单位贡献强度
城市 | 北京 | 天津 | 石家庄 | 唐山 | 秦皇岛 | 邯郸 | 邢台 | 保定 | 张家口 | 承德 | 沧州 | 廊坊 | 衡水 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
春昼 | IT | 0.43 | 1.14 | 1.15 | 1.44 | 1.49 | 0.79 | 0.20 | 0.61 | 0.56 | 0.04 | 0.27 | 2.29 | 0.93 |
IS | 24.69 | 47.11 | 43.13 | 33.73 | 67.44 | 44.44 | 54.57 | 22.87 | 8.95 | 4.81 | 21.00 | 88.98 | 65.09 | |
夏昼 | IT | 0.65 | 1.91 | 0.59 | 2.79 | 5.60 | 1.58 | 0.94 | 0.55 | 0.45 | 0.21 | 0.86 | 3.75 | 1.94 |
IS | 25.28 | 48.60 | 44.52 | 34.58 | 69.09 | 45.55 | 55.86 | 23.55 | 9.21 | 4.91 | 21.54 | 91.32 | 66.54 | |
秋昼 | IT | 1.80 | 1.11 | 0.92 | 1.26 | 3.31 | 1.70 | 1.14 | 0.97 | 0.84 | 0.69 | 0.20 | 2.41 | 0.93 |
IS | 24.10 | 46.41 | 42.55 | 33.27 | 66.68 | 43.84 | 53.61 | 22.52 | 8.77 | 4.70 | 20.70 | 87.30 | 63.67 | |
冬昼 | IT | 1.55 | 2.64 | 5.10 | 1.48 | 1.68 | 5.75 | 5.31 | 2.48 | 1.06 | 0.59 | 4.34 | 5.64 | 8.44 |
IS | 22.75 | 43.78 | 39.94 | 31.40 | 62.85 | 41.25 | 50.59 | 21.17 | 8.20 | 4.39 | 19.58 | 82.37 | 59.87 | |
春夜 | IT | 0.93 | 1.39 | 0.86 | 1.26 | 2.09 | 1.09 | 0.88 | 0.57 | 0.26 | 0.48 | 1.03 | 2.59 | 0.83 |
IS | 22.43 | 44.40 | 40.16 | 31.33 | 62.87 | 41.30 | 50.76 | 21.20 | 8.23 | 4.37 | 19.80 | 82.46 | 60.37 | |
夏夜 | IT | 0.65 | 1.02 | 0.30 | 1.09 | 1.53 | 0.43 | 0.08 | 0.22 | 0.16 | 0.21 | 0.45 | 1.52 | 0.18 |
IS | 23.66 | 46.55 | 42.06 | 33.03 | 66.26 | 43.34 | 53.10 | 22.32 | 8.67 | 4.61 | 20.74 | 86.56 | 63.13 | |
秋夜 | IT | 0.19 | 0.52 | 0.22 | 0.19 | 0.35 | 0.10 | 0.11 | 0.21 | 0.38 | 0.07 | 0.26 | 1.83 | 0.26 |
IS | 22.33 | 44.49 | 40.21 | 31.47 | 63.27 | 41.31 | 50.79 | 21.19 | 8.24 | 4.36 | 19.84 | 82.47 | 60.35 | |
冬夜 | IT | 2.34 | 2.75 | 2.51 | 3.18 | 6.07 | 2.70 | 2.82 | 1.51 | 0.81 | 1.01 | 1.87 | 4.20 | 3.70 |
IS | 21.15 | 41.22 | 38.03 | 29.69 | 59.53 | 39.22 | 48.06 | 20.01 | 7.75 | 4.09 | 18.80 | 77.88 | 57.07 |
[1] |
Akbari H, Kolokotsa D. Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 2016, 133: 834-842. DOI: 10.1016/j.enbuild.2016.09.067.
doi: 10.1016/j.enbuild.2016.09.067 |
[2] |
Zhou D C, Zhao S Q, Liu S G, et al. Surface urban heat island in China's 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 2014, 152: 51-61. DOI: 10.1016/j.rse.2014.05.017.
doi: 10.1016/j.rse.2014.05.017 |
[3] |
Qiao Z, Tian G J, Xiao L. Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 93-101. DOI: 10.1016/j.isprsjprs.2013.08.010.
doi: 10.1016/j.isprsjprs.2013.08.010 |
[4] |
谢启姣, 刘进华, 胡道华. 武汉城市扩张对热场时空演变的影响. 地理研究, 2016, 35(7): 1259-1272.
doi: 10.11821/dlyj201607004 |
[Xie Qijiao, Liu Jinhua, Hu Daohua. The influence of urban expansion in Wuhan on the temporal and spatial evolution of thermal field. Geographical Research, 2016, 35(7): 1259-1272.]. DOI: 10.11821/dlyj201607004.
doi: 10.11821/dlyj201607004 |
|
[5] |
Qiao Z, Liu L, Qin Y W, et al. The impact of urban renewal on land surface temperature changes: A case study in the main city of Guangzhou, China. Remote Sensing, 2020, 12(5): 794. DOI: 10.3390/rs12050794.
doi: 10.3390/rs12050794 |
[6] | IPCC. 2021: Summary for Policymakers. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, 2021: 6. |
[7] |
Peng S S, Piao S L, Ciais P, et al. Surface urban heat island across 419 global big cities. Environmental Science & Technology, 2012, 46(2): 696-703. DOI: 10.1021/es2030438.
doi: 10.1021/es2030438 |
[8] |
Zhou D C, Xiao J F, Bonafoni S, et al. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 2019, 11(1): 48. DOI: 10.3390/rs11010048.
doi: 10.3390/rs11010048 |
[9] | 乔治, 孙宗耀, 孙希华, 等. 城市热环境风险预测及时空格局分析. 生态学报, 2019, 39(2): 649-659. |
[Qiao Zhi, Sun Zongyao, Sun Xihua, et al. Prediction and analysis of urban thermal environment risk and its spatio-temporal pattern. Acta Ecologica Sinica, 2019, 39(2): 649-659.]. DOI: 10.5846/stxb201710281932.
doi: 10.5846/stxb201710281932 |
|
[10] |
Yao R, Wang L C, Huang X, et al. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 2017, 609: 742-754. DOI: 10.1016/j.scitotenv.2017.07.217.
doi: 10.1016/j.scitotenv.2017.07.217 |
[11] |
Peng J, Jia J L, Liu Y X, et al. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Environment, 2018, 215: 255-267. DOI: 10.1016/j.rse.2018.06.010.
doi: 10.1016/j.rse.2018.06.010 |
[12] |
乔治, 黄宁钰, 徐新良, 等. 2003-2017年北京市地表热力景观时空分异特征及演变规律. 地理学报, 2019, 74(3): 475-489.
doi: 10.11821/dlxb201903006 |
[Qiao Zhi, Huang Ningyu, Xu Xinliang, et al. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017. Acta Geographica Sinica, 2019, 74(3): 475-489.]. DOI: 10.11821/dlxb201903006.
doi: 10.11821/dlxb201903006 |
|
[13] |
王蕾, 张树文, 姚允龙. 绿地景观对城市热环境的影响: 以长春市建成区为例. 地理研究, 2014, 33(11): 2095-2104.
doi: 10.11821/dlyj201411009 |
[Wang Lei, Zhang Shuwen, Yao Yunlong. The impact of green landscape on urban thermal environment: A case study of the built-up area of Changchun City. Geographical Research, 2014, 33(11): 2095-2104.]. DOI: 10.11821/dlyj201411009.
doi: 10.11821/dlyj201411009 |
|
[14] |
Liu K, Su H B, Zhang L F, et al. Analysis of the urban heat island effect in Shijiazhuang, China using satellite and airborne data. Remote Sensing, 2015, 7(4): 4804-4833. DOI: 10.3390/rs70404804.
doi: 10.3390/rs70404804 |
[15] | 钱乐祥, 崔海山. 归一化水汽指数与地表温度的关系. 地理研究, 2008, 27(6): 1358-1366+1483. |
[Qian Lexiang, Cui Haishan. The relationship between normalized water vapor index and surface temperature. Geographical Research, 2008, 27(6): 1358-1366+1483.]. DOI: 10.11821/yj2008060015.
doi: 10.11821/yj2008060015 |
|
[16] |
Jia S Q, Wang Y H. Effects of land use and land cover pattern on urban temperature variations: A case study in Hong Kong. Urban Climate, 2020, 34: 100693. DOI: 10.1016/j.uclim.2020.100693.
doi: 10.1016/j.uclim.2020.100693 |
[17] |
于琛, 胡德勇, 曹诗颂, 等. 近30年北京市ISP-LST空间特征及其变化. 地理研究, 2019, 38(9): 2346-2356.
doi: 10.11821/dlyj020180621 |
[Yu Chen, Hu Deyong, Cao Shisong, et al. The spatial characteristics and changes of ISP-LST of Beijing in recent 30 years. Geographical Research, 2019, 38(9): 2346-2356.]. DOI: 10.11821/dlyj020180621.
doi: 10.11821/dlyj020180621 |
|
[18] |
Zander K K, Cadag J R, Escarcha J, et al. Perceived heat stress increases with population density in urban Philippines. Environmental Research Letters, 2018, 13(8): 084009. DOI: 10.1088/1748-9326/aad2e5.
doi: 10.1088/1748-9326/aad2e5 |
[19] |
Xu S L. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environmental Monitoring and Assessment, 2009, 151(1-4): 289-300. DOI: 10.1007/s10661-008-0270-1.
doi: 10.1007/s10661-008-0270-1 |
[20] | 姚远, 陈曦, 钱静. 城市地表热环境研究进展. 生态学报, 2018, 38(3): 1134-1147. |
[Yao Yuan, Chen Xi, Qian Jing. The research progress of urban surface thermal environment. Acta Ecologica Sinica, 2018, 38(3): 1134-1147.]. DOI: 10.5846/stxb201611022233.
doi: 10.5846/stxb201611022233 |
|
[21] | 蒂莫西·R. 奥克, 杰拉尔德·米尔斯, 安德烈亚斯·克里斯庭, 等. 城市气候. 苗世光, 王雪梅, 王成刚, 等译. 北京: 气象出版社, 2020: 27. |
[Oke T R, Mills G, Christen A, et al. Urban Climates. Translated by Miao Shiguang, Wang Xuemei, Wang Chenggang, et al. Beijing: China Meteorological Press, 2020: 27.] | |
[22] | 曹茜, 于德永, 孙云, 等. 土地利用/覆盖变化与气候变化定量关系研究进展. 自然资源学报, 2015, 30(5): 880-890. |
[Cao Qian, Yu Deyong, Sun Yun, et al. Research progress on the quantitative relationship between land use/cover change and climate change. Journal of Natural Resources, 2015, 30(5): 880-890.]. DOI: 10.11849/zrzyxb.2015.05.015.
doi: 10.11849/zrzyxb.2015.05.015 |
|
[23] |
Chen M X, Zhou Y, Hu M G, et al. Influence of urban scale and urban expansion on the urban heat island effect in metropolitan areas: Case study of Beijing-Tianjin-Hebei Urban Agglomeration. Remote Sensing, 2020, 12(21): 3491. DOI: 10.3390/rs12213491.
doi: 10.3390/rs12213491 |
[24] | 刘勇洪, 房小怡, 张硕, 等. 京津冀城市群热岛定量评估. 生态学报, 2017, 37(17): 5818-5835. |
[Liu Yonghong, Fang Xiaoyi, Zhang Shuo, et al. Research on quantitative evaluations of heat islands for the Beijing-Tianjin-Hebei Urban Agglomeration. Acta Ecologica Sinica, 2017, 37(17): 5818-5835.]. DOI: 10.5846/stxb201606031074.
doi: 10.5846/stxb201606031074 |
|
[25] | 国家统计局. 中国统计年鉴2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm, 2021-10-09. |
[National Bureau of Statistics. China Statistical Yearbook 2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm, 2021-10-09.] | |
[26] | 河北省统计局. 河北统计年鉴2021. http://tjj.hebei.gov.cn/hetj/tjnj/2021/zk/indexch.htm, 2021-07-29. |
[Hebei Provincial Bureau of Statistics. Hebei Statistical Yearbook 2021. http://tjj.hebei.gov.cn/hetj/tjnj/2021/zk/indexch.htm, 2021-07-29.] | |
[27] | 乔治, 田光进. 基于MODIS的2001-2012年北京热岛足迹及容量动态监测. 遥感学报, 2015, 19(3): 476-484. |
[Qiao Zhi, Tian Guangjin. Dynamic monitoring of the footprint and capacity for urban heat island in Beijing between 2001 and 2012 based on MODIS. Journal of Remote Sensing, 2015, 19(3): 476-484.]. DOI: 10.11834/jrs.20154165.
doi: 10.11834/jrs.20154165 |
|
[28] | 刘伟东, 尤焕苓, 孙丹. 1961-2010年京津冀及其周边区域温度日较差变化特征. 气候与环境研究, 2016, 21(2): 167-174. |
[Liu Weidong, You Huanling, Sun Dan. Diurnal temperature range characteristics in Beijing-Tianjin-Hebei and its surrounding area during 1961-2010. Climatic and Environmental Research, 2016, 21(2): 167-174.]. DOI: 10.3878/j.issn.1006-9585.2015.15117.
doi: 10.3878/j.issn.1006-9585.2015.15117 |
|
[29] | 乔治, 田光进. 北京市热环境时空分异与区划. 遥感学报, 2014, 18(3): 715-734. |
[Qiao Zhi, Tian Guangjin. Spatiotemporal diversity and regionalization of the urban thermal environment in Beijing. Journal of Remote Sensing, 2014, 18(3): 715-734.]. DOI: 10.11834/jrs.20143030.
doi: 10.11834/jrs.20143030 |
|
[30] | 刘纪远, 张增祥, 庄大方, 等. 20世纪90年代中国土地利用变化时空特征及其成因分析. 地理研究, 2003, 22(1): 1-12. |
[Liu Jiyuan, Zhang Zengxiang, Zhuang Dafang, et al. Spatial-temporal characteristics and causes of land use changes in China in the 1990s. Geographical Research, 2003, 22(1): 1-12.]. DOI: 10.11821/yj2003010001.
doi: 10.11821/yj2003010001 |
|
[31] |
Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 2004, 25(1): 261-274. DOI: 10.1080/0143116031000116417.
doi: 10.1080/0143116031000116417 |
[32] |
Snyder W C, Wan Z, Zhang Y, et al. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 1998, 19(14): 2753-2774. DOI: 10.1080/014311698214497.
doi: 10.1080/014311698214497 |
[33] | 梁顺林, 李小文, 王锦地, 等. 定量遥感:理念与算法. 北京: 科学出版社, 2013. |
[Liang Shunlin, Li Xiaowen, Wang Jindi, et al. Quantitative Remote Sensing:Ideas and Algorithms. Beijing: Science Press, 2013.] | |
[34] |
Liang S L. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 264-274. DOI: 10.1109/36.905234.
doi: 10.1109/36.905234 |
[35] |
Wang K C, Wan Z M, Wang P C, et al. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Geophysical Research-Atmospheres, 2005, 110(D11): D11109. DOI: 10.1029/2004JD005566.
doi: 10.1029/2004JD005566 |
[36] | 秦大河. 气候变化科学概论. 北京: 科学出版社, 2018: 125. |
[Qin Dahe. Introduction to Climate Change Science. Beijing: Science Press, 2018: 125.] | |
[37] | 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015: 16. |
[The Writing Committee of the Third National Assessment Report on Climate Change. The Third National Assessment Report on Climate Change. Beijing: Science Press, 2015: 16.] | |
[38] |
Mi Z F, Guan D B, Liu Liu Z, et al. Cities: The core of climate change mitigation. Journal of Cleaner Production, 2019, 207: 582-589. DOI: 10.1016/j.jclepro.2018.10.034.
doi: 10.1016/j.jclepro.2018.10.034 |
[39] | 武占云. 将适应气候变化纳入国土空间规划: 进展、困境与思路. 气候变化研究进展, 2021, 17(5): 559-569. |
[Wu Zhanyun. Incorporating adaptation to climate change into territorial and spatial planning: Progress, dilemmas and ideas. Climate Change Research Progress, 2021, 17(5): 559-569.]. DOI: 10.12006/j.issn.1673-1719.2021.035.
doi: 10.12006/j.issn.1673-1719.2021.035 |
[1] | 张潇, 谷人旭. 土地利用冲突的时空格局刻画与多情景模拟研究——以长江三角洲城市群为例[J]. 地理研究, 2022, 41(5): 1311-1326. |
[2] | 李鹏, 刘颖, 施冬, 肖池伟. 三种活跃火遥感产品(MODIS C6、VIIRS V1和VIIRS J1)一致性与差异性对比[J]. 地理研究, 2022, 41(5): 1481-1495. |
[3] | 康紫薇, 张正勇, 刘琳, 王统霞, 田浩, 陈泓瑾, 张雪莹. 基于MODIS的新疆地表温度时空变化特征分析[J]. 地理研究, 2022, 41(4): 997-1017. |
[4] | 罗紫元, 曾坚. 资源环境保护下天津市用地空间增长模拟[J]. 地理研究, 2022, 41(2): 341-357. |
[5] | 于斌斌, 苏宜梅. 土地财政如何影响土地利用效率?——基于规模与技术视角的动态空间杜宾模型检验[J]. 地理研究, 2022, 41(2): 527-545. |
[6] | 刘荣娟, 濮励杰, 朱明, 郄璐, 周扬帆. 2000—2020年江苏省如东海岸线与滩涂围垦时空演变及影响机制[J]. 地理研究, 2021, 40(8): 2367-2379. |
[7] | 李子君, 许燕琳, 王海军, 马良, 姜爱霞. 基于WaTEM/SEDEM模型的沂河流域土壤侵蚀产沙模拟[J]. 地理研究, 2021, 40(8): 2380-2396. |
[8] | 李灿. 区域土地利用转型诊断与调控的分析路径[J]. 地理研究, 2021, 40(5): 1464-1477. |
[9] | 吴伟, 杨飞龄, 王军军, 刁奕欣, 郭洋, 武瑞东. 基于MODIS时序数据的中国西南地区主要植被生态系统干扰动态监测及分析[J]. 地理研究, 2021, 40(5): 1478-1494. |
[10] | 许咏梅, 周黎明, 张兆彤. 新疆昌吉州耕地开垦轨迹对土壤肥力变化的影响[J]. 地理研究, 2021, 40(3): 657-672. |
[11] | 邹利林, 李裕瑞, 刘彦随, 王建英. 基于要素视角的耕地“三生”功能理论建构与实证研究[J]. 地理研究, 2021, 40(3): 839-855. |
[12] | 厉静文, 董锁成, 李宇, 杨洋, Boldanov Tamir. 中蒙俄经济走廊土地利用变化格局及其驱动因素研究[J]. 地理研究, 2021, 40(11): 3073-3091. |
[13] | 杨帆, 何凡能, 李美娇. 中国西部地区历史草地面积重建的方法——以甘宁青新区为例[J]. 地理研究, 2020, 39(7): 1667-1679. |
[14] | 田俊峰, 王彬燕, 程利莎, 王士君. 政策主导下的区域土地利用转型过程与机制——以中国东北地区为例[J]. 地理研究, 2020, 39(4): 805-821. |
[15] | 王亚辉, 李秀彬, 辛良杰. 近30年来耕地养老保障功能的时空演变及政策启示[J]. 地理研究, 2020, 39(4): 956-969. |
|