地理研究 ›› 2022, Vol. 41 ›› Issue (7): 2030-2050.doi: 10.11821/dlyj020210814
收稿日期:
2021-09-13
接受日期:
2022-01-24
出版日期:
2022-07-10
发布日期:
2022-07-07
通讯作者:
孙才志(1970-),男,山东烟台人,教授,博士生导师,研究方向为水资源经济与海洋经济。E-mail: suncaizhi@lnnu.edu.cn作者简介:
郝帅(1992-),男,河南安阳人,博士研究生,研究方向为资源环境与区域可持续发展。E-mail: haoshuai0914@126.com
基金资助:
Received:
2021-09-13
Accepted:
2022-01-24
Published:
2022-07-10
Online:
2022-07-07
摘要:
通过对水资源-能源-粮食(WEF)纽带系统效率的研究,对提高区域资源综合利用效率、促进区域资源-经济-社会的可持续发展具有重要意义。本文构建了WEF纽带系统效率评价指标体系,并采用网络DEA模型对1997—2019年中国30个省级行政区的WEF纽带系统效率进行测度,同时利用格兰杰因果检验方法对各省份WEF纽带系统效率间的“关系”进行判定,在此基础上,引入社会网络分析(Social Network Analysis,SNA)方法,对中国WEF纽带系统效率的网络结构特征进行相关分析。结果表明:① 中国省际WEF纽带系统效率整体呈上升趋势,由研究初期的低效率水平提升至研究末期的中等效率水平,空间分布上,中国WEF纽带系统效率呈现自东向西、从沿海向内陆逐渐递减的变化趋势,空间非均衡性特征较为显著。② 中国省际WEF纽带系统效率的网络结构特征具有复杂性的特征,研究对象均被包含于网络结构之中,与此同时,网络整体结构具有较好的稳定性和连通性;此外,网络个体结构特征分析表明,溢出关系较多的地区多集中于中国东部,而且在网络中多位于中心位置,而净受益地区多为中国的中部和西部地区。③ 块模型分析显示,“净溢出”板块由广东、上海等10个省份构成,“双向溢出”板块由江西、河南、河北等6个省份构成,“净受益”板块由广西、甘肃等8个省份构成,“中介人”板块由四川、陕西等6个省份构成,其中“净溢出”板块与“双向溢出”板块在网络结构中均起到“引领”作用,而“净溢出”板块在中国WEF纽带系统效率提升中扮演了“发动机”的角色,多集中于中国东部地区,“净受益”板块多集中于中国中西部地区,在网络中处于边缘位置,“中介人”板块则在网络结构中起到了“中介”和“桥梁”的作用。
郝帅, 孙才志. 基于网络DEA及SNA模型的中国水资源-能源-粮食纽带系统效率研究[J]. 地理研究, 2022, 41(7): 2030-2050.
HAO Shuai, SUN Caizhi. Water resources-energy-food nexus system efficiency in China based on network DEA and SNA model[J]. GEOGRAPHICAL RESEARCH, 2022, 41(7): 2030-2050.
表1
中国WEF纽带系统效率空间关联网络结构特征相关计算公式
指标类型 | 计算公式 | 公式中变量的含义 | |
---|---|---|---|
整体网络特征 | 网络密度 | | a表示实际存在的关系数量;b为研究区个数。 |
网络关联度 | | V为可达矩阵对角线上“0”的个数。 | |
网络等级 | | S表征空间关联网络结构中对称的节点对数。 | |
网络效率 | | K是空间关联网络结构中实际多余的关系数量。 | |
个体网络特征 | 度数中心度 | | d为在空间关联网络中某地区与其他地区之间直接关系的数量。 |
接近中心度 | | lij表示地区i与地区j之间的捷径距离,即在该捷径中包含的关系数量。 | |
中介中心度 | | gpq表示节点p与节点q之间的捷径数量;gpq(i)为节点p与节点q经过节点i的数量;npq(i)则表示节点i处于节点p、q之间捷径数量上的概率,且p≠q≠i,且p<q。 |
表2
中国WEF纽带系统效率评价指标体系
各子系统 | 指标类型 | 指标选取(单位) | |
---|---|---|---|
WEF纽带 系统效率 评价指标 体系 | 水资源子系统 (W) | 投入指标 | 水的生产及水利管理投资(以1997年为基期)(亿元) |
用水总量(生产、生活、生态)(亿m3) | |||
水的生产及水利管理从业人员(万人) | |||
水资源生产过程中的能源消耗量(亿t标准煤) | |||
期望产出指标 | 国内生产总值(以1997年为基期)(亿元) | ||
非期望产出指标 | 废水排放总量(亿m3) | ||
能源子系统 (E) | 投入指标 | 能源工业投资(亿元) | |
能源消费总量(亿t标准煤) | |||
采矿业、电力、热力及燃气生产和供应业人数(万人) | |||
能源生产过程的水资源消耗量(亿m3) | |||
期望产出指标 | 国内生产总值(以1997年为基期)(亿元) | ||
非期望产出指标 | 污染指数(无量纲) | ||
粮食子系统 (F) | 投入指标 | 粮食生产投资总额(亿元) | |
粮食生产从业人员(万人) | |||
粮食灌溉用水量(亿m3) | |||
粮食播种面积(hm2) | |||
粮食生产过程中的能源消耗(kJ) | |||
粮食生产过程中地膜使用量(t) | |||
期望产出指标 | 粮食生产总值(亿元) | ||
非期望产出指标 | 粮食生产过程中的灰水足迹(亿m3) |
表3
1997—2019年中国省际WEF纽带系统效率空间关联网络的中心性
省份(代码) | 度数中心度(DC) | 接近中心度(CC) | 中介中心度(BC) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
点出度 | 点入度 | 中心度 | 排序 | 中心度 | 排序 | 中心度 | 排序 | |||
北京(BJ) | 17 | 6 | 75.790 | 6 | 70.697 | 5 | 12.810 | 5 | ||
天津(TJ) | 18 | 9 | 79.310 | 2 | 71.375 | 3 | 12.904 | 4 | ||
河北(HE) | 15 | 10 | 75.754 | 7 | 69.363 | 9 | 11.648 | 8 | ||
山西(SX) | 9 | 12 | 62.069 | 22 | 63.759 | 21 | 5.150 | 23 | ||
内蒙古(NM) | 11 | 12 | 68.966 | 16 | 67.164 | 15 | 9.683 | 13 | ||
辽宁(LN) | 13 | 11 | 75.682 | 9 | 69.569 | 8 | 9.920 | 12 | ||
吉林(JL) | 8 | 16 | 62.009 | 24 | 63.215 | 22 | 6.138 | 18 | ||
黑龙江(HL) | 9 | 8 | 65.517 | 20 | 65.341 | 19 | 5.892 | 19 | ||
上海(SH) | 18 | 8 | 75.826 | 5 | 71.036 | 4 | 13.226 | 3 | ||
江苏(JS) | 18 | 10 | 78.930 | 3 | 72.857 | 2 | 15.658 | 1 | ||
浙江(ZJ) | 22 | 4 | 89.655 | 1 | 80.625 | 1 | 13.906 | 2 | ||
安徽(AH) | 13 | 12 | 75.610 | 11 | 68.378 | 13 | 11.601 | 9 | ||
福建(FJ) | 12 | 7 | 72.414 | 14 | 66.716 | 16 | 8.173 | 15 | ||
江西(JX) | 9 | 12 | 65.486 | 21 | 62.894 | 23 | 5.352 | 21 | ||
山东(SD) | 15 | 7 | 75.718 | 8 | 70.024 | 7 | 12.418 | 6 | ||
河南(HA) | 13 | 10 | 75.646 | 10 | 68.378 | 12 | 10.445 | 10 | ||
湖北(HB) | 11 | 7 | 72.379 | 15 | 67.829 | 14 | 8.298 | 14 | ||
湖南(HN) | 9 | 17 | 68.867 | 19 | 66.368 | 17 | 5.659 | 20 | ||
广东(GD) | 18 | 8 | 75.862 | 4 | 70.366 | 6 | 12.261 | 7 | ||
广西(GX) | 8 | 23 | 61.979 | 25 | 61.704 | 25 | 4.946 | 24 | ||
海南(HI) | 10 | 11 | 68.933 | 17 | 65.934 | 18 | 7.271 | 17 | ||
重庆(CQ) | 12 | 12 | 75.538 | 13 | 68.705 | 11 | 7.952 | 16 | ||
四川(SC) | 12 | 7 | 75.574 | 12 | 69.033 | 10 | 10.317 | 11 | ||
贵州(GZ) | 7 | 17 | 61.949 | 26 | 61.359 | 26 | 4.820 | 26 | ||
云南(YN) | 5 | 17 | 51.699 | 29 | 57.442 | 28 | 4.810 | 27 | ||
陕西(SN) | 10 | 12 | 68.900 | 18 | 64.359 | 20 | 5.164 | 22 | ||
甘肃(GS) | 7 | 16 | 58.621 | 27 | 60.732 | 27 | 3.892 | 28 | ||
青海(QH) | 6 | 17 | 51.724 | 28 | 56.476 | 29 | 2.439 | 30 | ||
宁夏(NX) | 4 | 16 | 51.674 | 30 | 55.864 | 30 | 3.880 | 29 | ||
新疆(XJ) | 9 | 14 | 62.039 | 23 | 62.379 | 24 | 4.927 | 25 | ||
平均值 | 11.6 | 11.6 | 69.337 | — | 66.331 | — | 8.385 | — |
[1] | United States National Intelligence Council. Global Trends 2030: Alternative Worlds. US: United States National Intelligence Council, 2012: 45-80. |
[2] | 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Statistical Yearbooks. Beijing: China Statistics Press, 1998-2020.] | |
[3] | 中华人民共和国统计局. 中国能源统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Energy Statistical Yearbook. Beijing: China Statistics Press, 1998-2020.] | |
[4] | Hoff H. Understanding the Nexus. Background paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Bonn: Stockholm Environment Institute. 2011: 4-51. |
[5] | Food and Agriculture Organization of the United Nations. The Water-Energy-Food Nexus: A new Approach in Support of Food Security and Sustainable Agriculture. Rome: Food and Agriculture Organization, 2014: 15-32. |
[6] | Asian Development Bank. Asian Water Development Outlook 2013. Manila: Asian Development Bank, 2013: 78-94. |
[7] | International Renewable Energy Agency. Renewable Energy in the Water, Energy & Food Nexus. Abu Dhabi: International Renewable Energy Agency, 2015: 62-70. |
[8] |
Schlör H, Venghaus S, Hake J F. The FEW-Nexus city index-measuring urban resilience. Applied Energy, 2018, 210: 382-392. DOI: 10.1016/j.apenergy.2017.02.026.
doi: 10.1016/j.apenergy.2017.02.026 |
[9] |
Ozturk I. Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries. Energy, 2015, 93: 999-1010. DOI: 10.1016/j.energy.2015.09.104.
doi: 10.1016/j.energy.2015.09.104 |
[10] |
Wang Q, Li S, He G, et al. Evaluating sustainability of Water-Energy-Food (WEF) nexus using an improved matter-element extension model: A case study of China. Journal of Cleaner Production, 2018, 202(NOV.20): 1097-1106. DOI: 10.1016/j.jclepro.2018.08.213.
doi: 10.1016/j.jclepro.2018.08.213 |
[11] |
Marttunen M, Mustajoki J, Sojamo S, et al. A framework for assessing water security and the water-energy-food nexus: The case of Finland. Sustainability, 2019, 11(10): 2900. DOI: 10.3390/su11102900.
doi: 10.3390/su11102900 |
[12] |
Smajgl A, Ward J, Pluschke L. The water-food-energy Nexus-realising a new paradigm. Journal of Hydrology, 2015, 533: 533-540. DOI: 10.1016/j.jhydrol.2015.12.033.
doi: 10.1016/j.jhydrol.2015.12.033 |
[13] |
Lawford R, Bogardi J, Marx S, et al. Basin perspectives on the water-energy-food security nexus. Current Opinion in Environmental Sustainability, 2013, 5(6): 607-616. DOI: 10.1016/j.cosust.2013.11.005.
doi: 10.1016/j.cosust.2013.11.005 |
[14] |
Li P C, Ma H W. Evaluating the environmental impacts of the water-energy-food nexus with a life-cycle approach. Resources, Conservation & Recycling, 2020, 157: 104789. DOI: 10.1016/j.resconrec.2020.104789.
doi: 10.1016/j.resconrec.2020.104789 |
[15] |
Mannan M, Al-Ansari T, Hamish R, et al. Quantifying the energy, water and food nexus: A review of the latest developments based on life-cycle assessment. Journal of Cleaner Production, 2018, 193, 300-314. DOI: 10.1016/j.jclepro.2018.05.050.
doi: 10.1016/j.jclepro.2018.05.050 |
[16] |
Chen S, Chen B. Urban energy-water nexus: A network perspective. Applied Energy, 2016, 184: 905-914. DOI: 10.1016/j.apenergy.2016.03.042.
doi: 10.1016/j.apenergy.2016.03.042 |
[17] |
Li P C, Ma H W. Evaluating the environmental impacts of the water-energy-food nexus with a life-cycle approach. Resources, Conservation & Recycling, 2020, 157: 104789. DOI: 10.1016/j.resconrec.2020.104789.
doi: 10.1016/j.resconrec.2020.104789 |
[18] | 孙才志, 周舟, 赵良仕. 基于SD模型的中国西南水-能源-粮食纽带系统仿真模拟. 经济地理, 2021, 41(6): 20-29. |
[Sun Caizhi, Zhao Liangshi. System simulation of water-energy-food in Southwest China based on SD model. Economic Geography, 2021, 41(6): 20-29.]. DOI: 10.15957/j.cnki.jjdl.2021.06.003.
doi: 10.15957/j.cnki.jjdl.2021.06.003 |
|
[19] |
Wu L N, Elshorbagy A, Pande S, et al. Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resources, Conservation & Recycling, 2020, 164: 105192. DOI: 10.1016/j.resconrec.2020.105192.
doi: 10.1016/j.resconrec.2020.105192 |
[20] |
Han D N, Yu D Y, Cao Q. Assessment on the features of coupling interaction of the food-energy-water nexus in China. Journal of Cleaner Production, 2020, 249: 119379. DOI: 10.1016/j.jclepro.2019.119379.
doi: 10.1016/j.jclepro.2019.119379 |
[21] |
Chen J F, Ding T H, Wang H M, et al. Research on total factor productivity and influential factors of the regional water-energy-Food nexus: A case study on Inner Mongolia, China. International Journal of Environmental Research and Public Health, 2019, 16(17): 3051. DOI: 10.3390/ijerph16173051.
doi: 10.3390/ijerph16173051 |
[22] |
Wang M, Sun C, Wang X. Analysis of the water-energy coupling efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water, 2019, 11(4): 632. DOI: 10.3390/w11040632.
doi: 10.3390/w11040632 |
[23] |
Chen W M, Wu S M, Lei Y L, et al. China's water footprint by province, and inter-provincial transfer of virtual water. Ecological Indicators, 2017, 74: 321-333. DOI: 10.1016/j.ecolind.2016.11.037.
doi: 10.1016/j.ecolind.2016.11.037 |
[24] |
Feng C Y, Qu S, Jin Y, et al. Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area. Applied Energy, 2019, 252: 113422. DOI: 10.1016/j.apenergy.2019.113422.
doi: 10.1016/j.apenergy.2019.113422 |
[25] |
Xu S, He W, Shen J, et al. Coupling and coordination degrees of the core water-energy-food nexus in China. International Journal of Environmental Research and Public Health, 2019, 16(9): 1648. DOI: 10.3390/ijerph16091648.
doi: 10.3390/ijerph16091648 |
[26] | 支彦玲, 陈军飞, 王慧敏, 等. 共生视角下中国区域“水-能源-粮食”复合系统适配性评估. 中国人口·资源与环境, 2020, 30(1): 129-139. |
[Zhi Yanling, Chen Junfei, Wang Huimin, et al. Assessment of water-energy-food nexus fitness in China from the perspective of symbiosis. China Population, Resources and Environment, 2020, 30(1): 129-139.]. DOI: 10.12062/cpre.20190818.
doi: 10.12062/cpre.20190818 |
|
[27] |
Feng Y, Zhong F, Huang C, et al. Spatiotemporal distribution and the driving force of the food-energy-water nexus index in Zhangye, Northwest China. Sustainability, 2020, 12(6): 2309. DOI: 10.3390/su12062309.
doi: 10.3390/su12062309 |
[28] |
Al-Ansari T, Korre A, Nie Z, et al. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustainable Production and Consumption, 2015, 2: 52-66. DOI: 10.1016/j.spc.2015.07.005.
doi: 10.1016/j.spc.2015.07.005 |
[29] |
Salmoral G, Yan X Y. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resources, Conservation & Recycling, 2018, 133: 320-330. DOI: 10.1016/j.resc-onrec.2018.01.018.
doi: 10.1016/j.resc-onrec.2018.01.018 |
[30] |
Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 2018, 210(15): 632-642. DOI: 10.1016/j.apenergy.2017.09.069.
doi: 10.1016/j.apenergy.2017.09.069 |
[31] |
Yu L, Xiao Y, Zeng X T, et al. Planning water-energy-food nexus system management under multi-level and uncertainty. Journal of Cleaner Production, 2020, 251: 119658. DOI: 10.1016/j.jclepro.2019.119658.
doi: 10.1016/j.jclepro.2019.119658 |
[32] |
Zhang T, Tan Q, Yu X N, et al. Synergy assessment and optimization for water-energy-food nexus: Modeling and application. Renewable and Sustainable Energy Reviews, 2020, 134: 110059. DOI: 10.1016/j.rser.2020.110059.
doi: 10.1016/j.rser.2020.110059 |
[33] | 彭少明, 郑小康, 王煜, 等. 黄河流域水资源-能源-粮食的协同优化. 水科学进展, 2017, 28(5): 681-690. |
[Peng Shaoming, Zheng Xiaokang, Wang Yu, et al. Study on water-energy-food collaborative optimization for Yellow River basin. Advances in Water Science, 2017, 28(5): 681-690.]. DOI: 10.14042/j.cnki.32.1309.2017.05.005.
doi: 10.14042/j.cnki.32.1309.2017.05.005 |
|
[34] |
Yan X C, Fang L, Mu L. How does the water-energy-food nexus work in developing countries? An empirical study of China. Science of the Total Environment, 2020, 716: 134791. DOI: 10.1016/j.scitotenv.2019.134791.
doi: 10.1016/j.scitotenv.2019.134791 |
[35] |
Lu S, Zhang X, Peng H, et al. The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China. Renewable and Sustainable Energy Reviews, 2021, 135: 110417. DOI: 10.1016/j.rser.2020.110417.
doi: 10.1016/j.rser.2020.110417 |
[36] | 周露明, 谢兴华, 朱珍德, 等. 基于水-能源-粮食纽带关系的农业资源投入产出效率研究. 农业资源与环境学报, 2020, 37(6): 875-881. |
[Zhou Luming, Xie Xinghua, Zhu Zhende, et al. Research on the input-output efficiency of agricultural resources based on the water-energy-food nexus. Journal of Agricultural Resources and Environment, 2020, 37(6): 875-881.]. DOI: 10.13254/j.jare.2019.0639.
doi: 10.13254/j.jare.2019.0639 |
|
[37] | 李桂君, 黄道涵, 李玉龙. 中国不同地区水-能源-粮食投入产出效率评价研究. 经济社会体制比较, 2017, 33(3): 138-148. |
[Li Guijun, Huang Daohan, Li Yulong. Evaluation on the efficiency of the input and output of water-energy-food in different regions of China. Comparative Economic & Social Systems, 2017, 33(3): 138-148.]. DOI: CNKI:SUN:JJSH.0.2017-03-014.
doi: CNKI:SUN:JJSH.0.2017-03-014 |
|
[38] | 王慧敏, 洪俊, 刘钢. “水-能源-粮食”纽带关系下区域绿色发展政策仿真研究. 中国人口·资源与环境, 2019, 29(6): 74-84. |
[Wang Huimin, Hong Jun, Liu Gang. Simulation research on different policies of regional green development under the nexus of water-energy-food. China Population, Resources and Environment, 2019, 29(6): 74-84.]. DOI: 10.12062/cpre.20190125.
doi: 10.12062/cpre.20190125 |
|
[39] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究. 中国人口·资源与环境, 2020, 30(1): 120-128. |
[Li Chengyu, Zhang Shiqiang. Chinese provincial water-energy-food coupling coordination degree and influencing factors research. China Population, Resources and Environment, 2020, 30(1): 120-128.]. DOI: 10.12062/cpre.20190818.
doi: 10.12062/cpre.20190818 |
|
[40] |
白景锋, 张海军. 中国水-能源-粮食压力时空变动及驱动力分析. 地理科学, 2018, 38(10): 1653-1660.
doi: 10.13249/j.cnki.sgs.2018.10.009 |
[Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.]. DOI: 10.13249/j.cnki.sgs.2018.10.009.
doi: 10.13249/j.cnki.sgs.2018.10.009 |
|
[41] |
Li G J, Huang D H, Li Y L. China's input-output efficiency of water-energy-food nexus based on the Data Envelopment Analysis (DEA) Model. Sustainability, 2016, 8(9): 1-16. DOI: 10.3390/su8090927.
doi: 10.3390/su8090927 |
[42] |
Sun C Z, Yan X D, Zhao L S. Coupling efficiency measurement and spatial correlation characteristic of water-energy-food nexus in China. Resources, Conservation and Recycling, 2021, 164: 105151. DOI: 10.1016/j.resconrec.2020.105151.
doi: 10.1016/j.resconrec.2020.105151 |
[43] |
Färe R, Grosskopf S. Productivity and intermediate products: A frontier approach. Economics Letters, 1996, 50(1):60-70. DOI: 10.1016/0165-1765(95)00729-6.
doi: 10.1016/0165-1765(95)00729-6 |
[44] | 程昀, 杨印生. 矩阵型网络DEA模型及其实证检验. 中国管理科学, 2013, 10(5): 103-109. |
[Chen Yun, Yang Yinsheng. Network DEA for matrix-type organization with application. Chinese Journal of Management Science, 2013, 10(5): 103-109.]. DOI: 10.16381/j.cnki.issn1003-207x.2013.05.004.
doi: 10.16381/j.cnki.issn1003-207x.2013.05.004 |
|
[45] | 黄杰. 中国能源环境效率的空间关联网络结构及其影响因素. 资源科学, 2018, 40(4): 759-772. |
[Huang Jie. The spatial network structure of energy-environmental efficiency and its determinants in China. Resources Science, 2018, 40(4): 759-772.]. DOI: 10.18402/resci.2018.04.10.
doi: 10.18402/resci.2018.04.10 |
|
[46] |
孙才志, 马奇飞. 中国省际水资源绿色效率空间关联网络研究. 地理研究, 2020, 39(1): 53-63.
doi: 10.11821/dlyj020180926 |
[Sun Caizhi, Ma Qifei. Spatial correlation network of water resources green efficiency between provinces. Geographical Research, 2020, 39(1): 53-63.]. DOI: 10.11821/dlyj020180926.
doi: 10.11821/dlyj020180926 |
|
[47] |
冯颖, 侯孟阳, 姚顺波. 中国粮食生产空间关联网络的结构特征及其形成机制. 地理学报, 2020, 75(11): 2380-2395.
doi: 10.11821/dlxb202011008 |
[Feng Ying, Hou Mengyang, Yao Shunbo. Structural characteristics and formation mechanism of spatial correlation network of grain production in China. Acta Geographica Sinica, 2020, 75(11): 2380-2395.]. DOI: 10.11821/dlxb202011008.
doi: 10.11821/dlxb202011008 |
|
[48] |
吴志才, 张凌媛, 黄诗卉. 粤港澳大湾区旅游经济联系的空间结构及协同合作模式. 地理研究, 2020, 39(6): 1370-1385.
doi: 10.11821/dlyj020190654 |
[Wu Caijie, Zhang Lingyuan, Huang Shihui. Spatial structure and characteristics of tourism economic connections in Guangdong-Hong Kong-Macao Greater Bay Area. Geographical Research, 2020, 39(6): 1370-1385.]. DOI: 10.11821/dlyj020190654.
doi: 10.11821/dlyj020190654 |
|
[49] | 刘华军, 何礼伟. 中国省际经济增长的空间关联网络结构: 基于非线性Granger因果检验方法的再考察. 财经研究, 2016, 42(2): 97-107. |
[Liu Huajun, He Liwei. The spatial network structure of China′s provincial economic growth: Re-examination based on nonlinear Granger causality test. Journal of Finance and Economics, 2016, 42(2): 97-107.]. DOI: 10.16538/j.cnki.jfe.2016.02.009.
doi: 10.16538/j.cnki.jfe.2016.02.009 |
|
[50] | 中华人民共和国统计局. 中国固定资产投资统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. Statistical Yearbook of the Chinese Investment in Fixed Assets. Beijing: China Statistics Press, 1998-2020.] | |
[51] | 中华人民共和国统计局. 中国环境统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Statistical Yearbook of Environment. Beijing: China Statistics Press, 1998-2020.] | |
[52] | 中华人民共和国统计局. 中国劳动统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Labour Statistical Yearbook. Beijing: China Statistics Press, 1998-2020.] | |
[53] | 中华人民共和国统计局. 中国人口和就业统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Population & Employment Statistical Yearbook. Beijing: China Statistics Press, 1998-2020.] | |
[54] | 中华人民共和国统计局. 中国农村统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[National Bureau of Statistics of China. China Rural Statistical Yearbook. Beijing: China Statistics Press, 1998-2020.] | |
[55] | 郑德凤, 郝帅, 孙才志. 基于DEA-ESDA的农业生态效率评价及时空分异研究. 地理科学, 2018, 38(03): 419-427. |
[Zheng Defeng, Hao Shuai, Sun Caizhi. Evaluation of agricultural ecological efficiency and its spatial-temporal differentiation based on DEA- ESDA. Scientia Geographica Sinica, 2018, 38(3): 419-427.]. DOI: 10.13249/j.cnki.sgs.2018.03.012.
doi: 10.13249/j.cnki.sgs.2018.03.012 |
|
[56] |
郝帅, 孙才志, 宋强敏. 中国能源-粮食生产对水资源竞争的关系: 基于水足迹的视角. 地理研究, 2021, 40(6): 1565-1581.
doi: 10.11821/dlyj020200525 |
[Hao Shuai, Sun Caizhi, Song Qiangmin. Study on the competitive relationship between energy and food production for water resources in China: From a perspective of water footprint. Geographical Research, 2021, 40(6): 1565-1581.]. DOI: 10.11821/dlyj020200525.
doi: 10.11821/dlyj020200525 |
|
[57] | 中国电力企业联合会. 中国电力统计年鉴. 北京: 中国统计出版社, 1998-2020. |
[China Electricity Council. China Electric Power Statistical Yearbook. Beijing: China Statistics Press, 1998-2020.] |
[1] | 夏启繁, 杜德斌. 21世纪海上丝绸之路能源贸易结构及与中国的贸易关系演变[J]. 地理研究, 2022, 41(7): 1797-1813. |
[2] | 刘晓宇, 辛良杰. 2007—2019年中国城市土地价格的空间分化[J]. 地理研究, 2022, 41(6): 1637-1651. |
[3] | 尹旭, 王婧, 李裕瑞, 封志明, 戚伟. 中国乡镇人口分布时空变化及其影响因素[J]. 地理研究, 2022, 41(5): 1245-1261. |
[4] | 肖凡, 王姣娥, 黄宇金, 古恒宇. 中国高新技术企业分布影响因素的空间异质性与尺度效应[J]. 地理研究, 2022, 41(5): 1338-1351. |
[5] | 王伟, 纪翌佳, 金凤君. 基于动态空间面板模型的中国港口竞争与合作关系研究[J]. 地理研究, 2022, 41(3): 616-632. |
[6] | 宋涛, 孙曼, 刘志高. 改革开放以来中国西南边境地区制度与产业协同演化研究——以云南勐腊为例[J]. 地理研究, 2022, 41(3): 633-646. |
[7] | 何沛东. 中国海域地名的源流与时空特征[J]. 地理研究, 2022, 41(3): 777-793. |
[8] | 程艺, 刘慧, 张芳芳. 中国边境口岸地区传染病境外输入风险评估——以新冠肺炎疫情为例[J]. 地理研究, 2022, 41(3): 851-866. |
[9] | 陈小强, 袁丽华, 宋长青, 程昌秀, 曹丹萍, 王翔宇, 梁晓瑶, 王元慧, 易红. 中美在中国周边地区的商品贸易发展及影响力对比[J]. 地理研究, 2022, 41(3): 663-680. |
[10] | 齐宏纲, 赵美风, 刘盛和, 高苹, 刘振. 2000—2015年中国高学历人才省际迁移的演化格局及影响机理[J]. 地理研究, 2022, 41(2): 456-479. |
[11] | 冉钊, 高尚, 杨捷, 高建华, 张佰发. 大城市医疗健康资源空间交互及其网络演化——以郑州中心城区为例[J]. 地理研究, 2022, 41(2): 494-508. |
[12] | 胡国建, 陆玉麒, 胡舒云. 顾及企业注册地址的区位理论研究[J]. 地理研究, 2022, 41(2): 580-595. |
[13] | 庄汝龙, 宓科娜. 能源消费、结构变化与空气质量——基于省际面板数据的实证检验[J]. 地理研究, 2022, 41(1): 210-228. |
[14] | 黄永源, 朱晟君. 外资企业的环境溢出对内资企业污染排放强度的影响[J]. 地理研究, 2022, 41(1): 251-267. |
[15] | 周宏浩, 谷国锋. 外部性视角下中国城市网络演化及其环境效应研究[J]. 地理研究, 2022, 41(1): 268-285. |
|