地理研究 ›› 2013, Vol. 32 ›› Issue (9): 1613-1622.doi: 10.11821/dlyj201309004
李国胜1,2, 廖和平2
收稿日期:
2012-08-29
修回日期:
2013-02-15
出版日期:
2013-09-10
发布日期:
2013-09-10
作者简介:
李国胜(1963-),男,江苏常州人,研究员。主要从事海岸海洋环境遥感及数值模式研究。E-mail:ligs@igsnrr.ac.cn
基金资助:
LI Guosheng1,2, LIAO Heping2
Received:
2012-08-29
Revised:
2013-02-15
Online:
2013-09-10
Published:
2013-09-10
摘要: 发展中长时间尺度的海岸演化预测方法与机理模型,是目前国际海岸演化研究领域关注的焦点和最具挑战性课题。本文系统性地回顾了近半个世纪以来不同时间尺度海岸演化模式的研究发展历程和成果,从动力机制和时间尺度两个方面对海岸演化机理模型存在的主要建模瓶颈问题进行了系统总结。通过对渤海湾西岸近一个半世纪以来海岸演化机制的初步分析,提出了以泥沙收支、环流输送、波浪掀沙以及波气候变化等要素作为年代际尺度海岸演化主要驱动因子,基于驱动力概化与统计升尺度有机衔接的年代际尺度海岸演化机理模型的动力—统计建模方法框架新思路,为推动海岸演化动力学理论体系和中长时间尺度海岸演化预测方法创新,提供了重要科学依据和借鉴。
李国胜, 廖和平. 年代际尺度海岸演化机制与动力—统计建模方法[J]. 地理研究, 2013, 32(9): 1613-1622.
LI Guosheng, LIAO Heping. Modeling decadal time-scale coastal evolution of the western Bohai Bay by the dynamical-statistical approach[J]. GEOGRAPHICAL RESEARCH, 2013, 32(9): 1613-1622.
[1] Larson M, Kraus N C. Prediction of cross-shore sediment transport at different spatial and temporal scales. Marine Geology, 1995, 126(1-4): 111-127. [2] Hanson H, Aarninkhof S., et al. Modelling of coastal evolution on yearly to decadal time scales. Journal of Coastal Research, 2003, 19(4): 790-811. [3] Schwarzer K, Diesing M, et al. Coastline evolution at different time scales-examples from the Pomeranian Bight, southern Baltic Sea. Marine Geology, 2003, 194(1-2): 79-101. [4] Cowell P J, Roy P S, et al. Simulation of large-scale coastal change using a morphological behaviour model. Marine Geology, 1995, 126(1-4): 45-61. [5] Stive M J F et al. Variability of shore and shoreline evolution. Coastal Engineering, 2002, 47: 211-235. [6] Niedoroda A W et al. Modeling shore-normal large-scale coastal evolution. Marine Geology, 1995, 126: 181-199. [7] De Vriend et al. Approaches to long-term modeling of coastal morphology: A review. Coastal Engineering, 1993, 21: 225-269. [8] French J R, Burningham. Coastal geomorphology: Trends and challenges. Progress in Physical Geography, 2009, 33 (1): 17-29. [9] Wright L D, Thom B G. Coastal depositional landforms: A morphodynamic approach. Progress in Physical Geography, 1977(1): 412-459. [10] List J H, Terwindt J H J. Introduction: Large-scale coastal behavior. Marine Geology, 1995, 126: 1-3. [11] Maria G H, David E K. Influence of the geologic framework on spatial variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach, Delaware. Journal of Coastal Research, 2003, 38(Special Issue): 147-167. [12] Wu C Y, Ren J, Bao Y et al. A long-term morphological modeling study on the evolution of the Pearl River Delta, and estuarine bays since 6000 yr BP. Geol Soc Amer, 2007, Special Paper: 199-214. [13] Pelnard-Considere. Essai de theorie de l'evolution des formes de rivage en plages desable et de galets. 4th Journees de l'Hydraulique, Les Energies de la Mer Ⅲ, 1956, 289-298. [14] Bakker W T. The dynamics of a coast with a groin system, Proc. 11th Coast. Engrg. Conf., ASCE, New York, N.Y., 1969, 492-517. [15] Walton T, Chiu T. A review of analytical techniques to solve the sand transport equation and some simplified solutions, Proc. Coast. Struc.' 79, ASCE, New York, N.Y., 1979, 809-837. [16] De Vriend H J. 2DH mathematical modeling of morphological evolution in shallow water. Coast Eng, 1987, 11(1): 1-27. [17] Briand, M G, Kamphuis J W. A micro-computer based Quasi 3-D sediment transport model. Coastal Engineering, 1990, 2159-2172. [18] Roelvink J A et al. Design and development of Delft3D and application to coastal morphodynamics. Proceedings of Hydroinformatics' 94 conference, Delft.1994. [19] Larson M, Kraus N C,. SBEACH: numerical model for simulating storm induced beach change: U.S. Army Corp@ of Engineers Technical Report CERC-89-9, 1989. [20] Hanson H. GENESIS - A generalized shoreline change numerical model. Journal of Coastal Research, 1989, 5(1): 1-27. [21] Dabees M A, Kamphuis J W. Oneline, a numerical model for shoreline change. Coastal Engineering, 1998: 2668-2680. [22] Dabees M A, Kamphuis J W. NLINE: efficient modeling of 3-D beach change. ICCE'00 Sydney, Australia, 2000. [23] Grijm W. Theoretical forms of shoreline, Proc.7 th Coast. Engrg. Conf. ASCE, New York, N.Y., 1961, 197-202. [24] Larson M. Hanson H, et al., Analytical solutions of the One-line Model of shoreline change, Technical Report CERC-87-15, US Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, 1987. [25] 曹祖德, 王桂芬. 波浪掀沙、潮流输沙的数值模拟. 海洋学报, 1993, 15(1): 107-118. [26] 张长宽. 基于长期波浪序列的沙质海岸演变数值模型. 河海大学学报, 1994, 22(4): 1-7. [27] 窦国仁. 潮流和波浪的输沙能力. 科学通报, 1995, 40(5): 443-446. [28] Hanson H, and Kraus N C. Genesis: Generalized Model for Simulating Shoreline Change. CERC Report 89-19, U.S. Corps of Engineers, Vicksburg. 1989. [29] Kamphuis J W. Alongshore sediment transport rate. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE 117, 1991, 624-640. [30] Larson M, Hanson H, Kraus N C. Analytical solutions of one-line model for shoreline change near coastal structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 180-191. 1997 July/Aug. [31] Environment Agency. Characterization and prediction of large-scale, long-term change of coastal geomorphological behaviors: Final Science Report. SC060074/SR1, 2010. [32] De Vriend. Mathematical modeling and large-scale coastal behavior, Part 2: predictive model. J Hydraulic Rec, 1991, 29(6): 741-753. [33] Vrijling J K, Meyer G J. Probabilistic coastline position computations. Coastal Engineering, 1992, 17: 1-23. [34] Dong P, Chen H. Probabilistic predictions of time dependent long-term beach erosion risks. Coastal Engineering, 1999 (36): 243-261. [35] Reeve D E, Fleming C A. A statistical-dynamical method for predicting long term coastal evolution. Coastal Engineering, 1997, 30 (3-4): 259-280. [36] Gelfenbaum G, Roelvink J A, Meijs M, et al. Process-based morphological modeling of Grays Harbor inlet at decadal timescales. Proceedings of Coastal Sediments '03,2003. [37] Reeve D E, Spivack M. Evolution of shoreline position moments. Coastal Engineering, 2004 (51): 661-673. [38] 任美锷. 黄河的输沙量:过去、现在和将来—距今15 万年以来的黄河泥沙收支表. 地球科学进展, 2006, 21(6): 551-563. [39] 李凤林. 渤海沿岸现代海蚀研究:环渤海地区现代海蚀机制、危害与对策. 天津: 天津科学技术出版社, 1996. [40] 王颖, 张永战. 人类活动与黄河断流及海岸环境影响. 南京大学学报, 1998, 34(3): 257-271. [41] 王强, 李凤林. 渤海湾西岸第四纪海陆变迁. 海洋地质与第四纪地质. 1983, 3(4): 83-89. [42] 叶青超. 黄河三角洲地貌结构及发育模式. 地理学报, 1982, 37(4). [43] 钱意颖, 叶青超, 周文浩. 黄河干流水沙变化与河床演变. 北京: 中国建材工业出版社, 1993. [44] 恽才兴. 渤海湾典型岸段近岸过程研究. 中国工程科学, 2001, 3(3): 42-51. [45] 姜义. 渤海湾西岸近百年来海岸线变迁遥感分析. 国土资源遥感, 2003(4): 54-58. [46] 王宏. 渤海湾泥质海岸带近现代地质环境变化研究(I): 意义、目标与方法. 第四纪地质, 2003, 3(4): 385-392. [47] 黄海军. 黄河三角洲与渤、黄海陆海相互作用研究. 北京: 科学出版社, 2005. [48] 武桂秋, 夏东兴, 王文海. 现行黄河入海泥沙分布与海洋动力要素的关系. 海岸工程, 1994, 13(1): 24-30. [49] Pang J Z, Si S H. Fluvial processes of Huanghe River Estuary, Ⅱ. Hydrographical character and the region of sediment silting. Oceanologia et Limnologia Sinica, 1980, 11(4): 295-305. [50] 曹文洪. 黄河河口海岸泥沙输移规律和演变机理及湿地变迁研究[D]. 中国水利水电科学研究院, 1999. [51] 胡春宏, 吉祖稳, 王涛. 黄河口海洋动力特性与泥沙的输移扩散. 泥沙研究, 1996, 4: 1-10. [52] 杨作升. 现行黄河口水下三角洲海底形貌及不稳定性. 青岛海洋大学学报, 1990, 1. [53] 庞重光, 杨作升. 黄河口最大浑浊带特征及其时空演变. 黄渤海海洋, 2000, 18(3): 1- 6。 [54] 庞重光, 杨作升. 黄河口泥沙异重流的数值模拟. 青岛海洋大学学报, 2001, 31(5): 762-768. [55] 王厚杰, 杨作升. 黄河口泥沙输运三维数值模拟I: 黄河口切变锋.泥沙研究, 2006(2): 1-9. [56] 董年虎. 黄河口清水沟流路泥沙淤积分布及扩散. 黄渤海海洋, 1997, 15(2): 33-37. [57] Li Guosheng, Wang Hailong, Liao Heping. Numerical simulation on seasonal transport variations and mechanisms of suspended sediment discharged from the Yellow River to the Bohai Sea, J. of Geogr. Sci.,2010,20(6): 923-937. [58] Li Guosheng, Xue Xinghua, Liuying, et al. Diagnostic experiments for transport mechanisms of suspended sediment discharged from the Yellow River in the Bohai Sea, J. of Geogr. Sci., 2010, 20(1): 49-63. [59] 李国胜, 王海龙. 黄河入海泥沙悬移输送机制的敏感性试验研究. 地理研究, 2009, 28(3): 571-582. [60] 李国胜, 王海龙, 董超. 黄河入海泥沙输运及沉积过程的数值模拟. 地理学报, 2005, 60(5): 707-716. [61] 王海龙, 李国胜. 黄河入海泥沙在渤海中悬移输送季节变化的数值研究. 海洋与湖沼, 2009, 40(2): 129-137. [62] 秦蕴珊. 渤海地质. 北京: 科学出版社, 1985. [63] 董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系. 海洋学报, 1989, 11(1): 102-114. [64] 赵保仁, 庄国文, 曹德明. 渤海的环流、潮余流及其对沉积物分布的影响. 海洋与湖沼, 1995, 26(5): 466-473. [65] 邢焕政. 海河口岸线演变及泥沙来源分析. 海河水利, 2003(2): 28-31. [66] Ren Meie, Walker H J. Environmental consequences of human activity on the Yellow River and its delta. Physical Geography, 1998, 19(5): 429-430. [67] Ren Liliang, Wang Meirong, Li Chunhong et al. Impact s of human activity on river runoff in t he northern area of China. Journal of Hydrology, 2002, 261: 204-217. [68] Xu Jiongxin. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management, 2005, 35: 620-631. [69] Wang Houjie, Yang Zuosheng, Yoshiki Saito, et al. Stepwise decreases of t he Huanghe (Yellow River) sediment load (1950-2005) : Impact s of climate change and human activities. Global and Planetary Change, 2007 (57): 331-354. [70] Ding Yanfeng, Pan Shaoming. Yellow River runoff changes and influencing factors during the last 50 years. Quaternary Sciences, 2007, 27 (5): 709-717. [71] Wang Houjie. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. Journal of Hydrology, 2010, 391: 302-313. [72] Xu Jiongxin. Temporal variation in summer monsoon intensity since 1873 and its influence on runoff in the drainage area between Hekouzhen and Longmen, Yellow River basin, China. Climatic Change, 2012, DOI: 10.1007/ s10584-011-0225-3. [73] Wang Houjie, Yang Zuosheng, Yoshiki Saito, et al. Inter annual and seasonal variation of the Huanghe water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global and Planetary Change, 2006 (50): 212-225. [74] 赵振国, 蒋伯仁, 陈国珍, 等. ENSO事件与青藏高原积雪和东亚大气环流的可能联系. 山东气象, 1999, 19(4): 1-8. [75] 陈兴芳, 宋文玲. 近10 年我国降水的QBO分析. 应用气象学报, 1997, 8(4): 469-476. [76] 王海龙, 李国胜. 近50 年来黄河入海水沙通量变化的多尺度效应分析. 自然科学进展, 2006, 16(12): 1639-1644. [77] Sebastian D. Wave climate, coastal sediment budget and shoreline changes foe the Danube delta. Marine Geology, 2009 (262): 39-49. [78] Ruggiero P. Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Marine Geology, 2010, 273(1-4): 127-140. [79] Zacharioudaki A, Reeve, D E. Shoreline evolution under climate change wave scenarios. Climatic Change, 2011, 108: 73-105. [80] Peter N A. Effects of climate change and wave direction on longshore sediment transport patterns in Southern California. Climatic Change, 2012, DOI: 10.1007/s10584-011-0317-0. |
[1] | 戴其文, 杨靖云, 张晓奇, 胡森林. 污染企业/产业转移的特征、模式与动力机制[J]. 地理研究, 2020, 39(7): 1511-1533. |
[2] | 刘清, 杨永春, 蒋小荣. 全球价值生产的空间组织:以苹果手机供应链为例[J]. 地理研究, 2020, 39(12): 2743-2762. |
[3] | 刘大庆, 白玲, 张宏, 郗笃刚, 焦昆, 吴斌. 全球地缘政治格局演变的动力机制——基于变量与变量关系的解析[J]. 地理研究, 2018, 37(2): 391-403. |
[4] | 张梦天, 王成金, 王成龙. 上海港港区区位与功能演变及动力机制[J]. 地理研究, 2016, 35(9): 1767-1782. |
[5] | 曹广忠, 马嘉文. 中国城镇化与非农化的空间分异、相互关系和形成机制[J]. 地理研究, 2016, 35(12): 2249-2260. |
[6] | 李佳, 陈佳, 杨新军. 旅游社会——生态系统的运行机制——以西安市上王村为例[J]. 地理研究, 2015, 34(5): 977-990. |
[7] | 魏冶, 修春亮, 孙平军. 21世纪以来中国城镇化动力机制分析[J]. 地理研究, 2013, 32(9): 1679-1687. |
[8] | 吕韬, 曹有挥, 陈雯, 吴威. 区域服务业时空演化的动力机制——以长三角地区为例[J]. 地理研究, 2011, 30(8): 1471-1482. |
[9] | 吴丰林, 方创琳, 赵雅萍. 城市产业集聚动力机制与模式研究的PAF模型[J]. 地理研究, 2011, 30(1): 71-82. |
[10] | 常瑞英, 刘国华, 傅伯杰. 区域尺度土壤固碳量估算方法评述[J]. 地理研究, 2010, 29(9): 1616-1628. |
[11] | 王介勇, 刘彦随, 陈玉福. 黄淮海平原农区典型村庄用地扩展及其动力机制[J]. 地理研究, 2010, 29(10): 1833-1840. |
[12] | 李国胜, 王海龙. 黄河入海泥沙悬移输送机制的控制试验[J]. 地理研究, 2009, 28(3): 571-582. |
[13] | 廖和平, 彭 征, 洪惠坤, 程 希. 重庆市直辖以来的城市空间扩展与机制[J]. 地理研究, 2007, 26(6): 1137-1146. |
[14] | 王凯, 李国胜, 方国洪, 李柏良. 大河三角洲河口海岸演化机理模型研究:(II)模型构建与实证[J]. 地理研究, 2003, 22(2): 140-150. |
[15] | 李国胜, 李柏良, 王凯. 大河三角洲河口海岸演化机理模型研究:(I)模式理论与进展[J]. 地理研究, 2003, 22(1): 21-29. |
|