地理研究 ›› 2014, Vol. 33 ›› Issue (7): 1275-1284.doi: 10.11821/dlyj201407008
张文杰1,2, 程维明1, 李宝林1, 仝迟鸣1,2, 赵敏1,2, 王楠1,2
收稿日期:
2013-11-11
修回日期:
2014-04-25
出版日期:
2014-07-10
发布日期:
2014-07-10
通讯作者:
程维明(1973-),男,甘肃天水人,副研究员,主要从事地貌学与地理信息系统研究。E-mail:chengwm@lreis.ac.cn
E-mail:chengwm@lreis.ac.cn
作者简介:
张文杰(1988-),男,山东人,硕士,主要从事数字地形分析。E-mail:zwjiezky@163.com
基金资助:
ZHANG Wenjie1,2, CHENG Weiming1, LI Baolin1, TONG Chiming1,2, ZHAO Min1,2, WANG Nan1,2
Received:
2013-11-11
Revised:
2014-04-25
Online:
2014-07-10
Published:
2014-07-10
摘要: 冻土是一种对气候变化极为敏感的土体介质,故气候的变化过程能反映和模拟冻土的分布及变化趋势。基于高程—响应模型,运用高分辨率的高程数据(DEM)、经度数据(Longitude)、纬度数据(Latitude)、年平均气温数据(MAAT)和气温垂直递减率数据(VLRT)对祁连山地区近40 年的多年冻土分布状况进行了数值模拟。分析表明:① 该高程—响应模型模拟的冻土范围和变化趋势与相关研究所引入逻辑回归模型的模拟结果基本一致。② 该模型模拟的1970s、1980s、1990s,2000s 的祁连山地区冻土分布面积分别为9.75×104 km2、9.35×104 km2、8.85×104 km2、7.66×104 km2。在这40 年中,冻土的分布范围呈现出明显减少的趋势。③ 从1970s 到1980s、1980s 到1990s、1990s 到2000s 三个时间段内,冻土分布范围的退缩速率分别为4.1%、5.3%、13.4%,其呈现逐渐增速的趋势,1990s 到2000s 出现了跳跃式增长。本研究可为分析长时间序列祁连山地区的多年冻土变化提供科学参考依据。
张文杰, 程维明, 李宝林, 仝迟鸣, 赵敏, 王楠. 气候变化下的祁连山地区近40 年多年冻土分布变化模拟[J]. 地理研究, 2014, 33(7): 1275-1284.
ZHANG Wenjie, CHENG Weiming, LI Baolin, TONG Chiming, ZHAO Min, WANG Nan. Simulation of the permafrost distribution on Qilian Mountains over past 40 years under the influence of climate change[J]. GEOGRAPHICAL RESEARCH, 2014, 33(7): 1275-1284.
[1] Guglielmin M, Dramis M. Permafrost as a climatic indicator in northern Victoria Land, Antarctica. International Glaciological Society, 1999, 29: 131-135. [2] 蒋复初, 吴锡浩, 王书兵, 等. 中国大陆多年冻土线空间分布基本特征. 地质力学学报, 2003, 9(4): 303-312. [Jiang Fuchu, Wu Xihao, Wang Shubin, et al. Basic features of spatial distribution of the limits of permafrost in China. Journal of Geomechanics, 2003, 9(4): 303-312.] [3] Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective. Ambio, 2006, 35(4): 169-175. [4] Harris C, Mühll D V, Isaksen K, et al. Warming permafrost in European mountains. Global Planet Change, 2003, 39(3-4): 215-225. [5] Osterkamp T E. The recent warming of permafrost in Alaska. Global and Planetary Change, 2005, 49(3-4): 187-202. [6] Vokelj S V, Riseborough D, Coutts R, et al. Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications. Cold Regions Science and Technology, 2010, 64(1): 46-56. [7] Etzelmüller B, Berthling I, Solid J L. Aspects and concepts on the geomorphological significance of Holocene permafrost in southern Norway. Geomorphology, 2003, 52(1-2): 87-104. [8] Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research-Earth Surface, 2007, 112(F2): F02S03. [9] Yang M X, Nelson F E, Shiklomanov N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 2010, 103(1-2): 31-44. [10] 吴吉春, 盛煜, 李静, 等. 疏勒河源区的多年冻土. 地理学报, 2009, 64(5): 571-580. [Wu Jinchun, Sheng Yu, Li Jing, etal. Permafrost in source areas of Shule River in Qilian Mountains. Acta Geographica Sinica, 2009, 64(5): 571-580.] [11] 贾文雄, 何元庆, 李宗省, 等. 祁连山及河西走廊气候变化的时空分布特征. 中国沙漠, 2008, 28(6): 1151-1156. [Jia Wenxiong, He Yuanqing, Li Zongxing, et al. Spatio-temporal distribution characteristics of climate change in Qilian Mountains and Hexi Corridor. Journal of Desert Research, 2008, 28(6): 151-1156.] [12] Li X, Cheng G D, Jin H J, et al. Cryospheric change in China. Global Planetary Change, 2008, 62(3-4): 210-218. [13] Jin H J, Li S X, Cheng G D, et al. Permafrost and climatic change in China. Global and Planetary Change, 2000, 26(4): 387-404. [14] Wang S L, Jin H J, Li S S, et al. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafrost and Periglacial Processes, 2000, 11: 43-53. [15] Yang M X, Nelson F E, Shiklomanov N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 2010, 103(1-2): 31-44. [16] 祝有海, 张永勤, 文怀军, 等.青海祁连山冻土区发现天然气水合物. 地质学报, 2009, 83(11): 1762-1771. [Zhu Youhai, Zhang,Yongqin, Wen Huaijun, et al. Gas Hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. ACTA Geologica Sinica, 2009, 83(11): 1762-1771.] [17] Lu Z Q, Zhu Y H, Zhang Y Q, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province. China Cold Regions Science and Technology, 2011, 66(2-3): 93-104. [18] Williams P J, Smith M W. The Frozen Earth: Fundamentals of Geocryology. New York: Cambridge University Press, 1989. [19] Gerrard A J. Mountain Environments: An Examination of the Physical Geography of Mountains. Cambridge, MA: MIT Press, 1990. [20] Keller F. Automated mapping of mountain permafrost using the program PERMAKART within the geographic information system ARC\INFO. Permafrost and Periglacial Process, 1992, 3(2): 139-142. [21] Malevsky-Malevich S P, Molkentin E K, Nadyozhina E D, et al. Numerical simulation of permafrost parameters distribution in Russia. Cold Regions Science and Technology, 2001, 32(1): 1-11. [22] 施雅凤, 米德生. 中国冰雪冻土图(1:4000000). 北京: 中国地图出版社, 1988. [Shi Yafeng, Mi Desheng. Map of Snow, Ice and Frozen Ground in China (1:4000000). Beijing: China Map Publishing House, 1988.] [23] Lu G Y, Wong D W. An adaptive inverse distance weighting spatial interpolation technique. Computers & Geosciences, 2008, 34:1044-1055. [24] Barry R G. The World Climate Research Programe (WCRP) Climate and Cryosphere Project (CliC): Priority studies of the cryosphere and climate. Journal of Glaciology and Geocryology, 2002, 24(5): 523-525. [25] Bartier P M, Keller C P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers & Geosciences, 1996, 12: 795-799. [26] Markus I. Modeling and Verification of the Permafrost Distribution in the Bernese Alps (Western Switzerland). Permafrost and Periglacial Processes, 1996, 7: 267-280. [27] Delisle G, Caspers G, Freund H. Permafrost in north-central Europe during the Weichselian: How deep? In: Permafrost, Phillips M, Springman S, et al. Proceedings of the Eighth International Conference on Permafrost. Swets & Zeitlinger: Lisse, 2003: 187-191. [28] Lewkowicz A G, Ednie M. Probability mapping of mountain permafrost using the BTS method,Wolf Creek, Yukon Territory, Canada. Permafrost and Periglacial Process, 2004, 15: 67-80. [29] Salzmann N, Frei C, Vidale P L, et al. The application of Regional Climate Model output for the simulation of highmountain permafrost scenarios. Global and Planetary Change, 2007, 56: 188-202. [30] Bonnaventure P P, Lewkowicz A G, Kremer M, et al. A permafrost probability model for the southern Yukon and northern British Columbia, Canada. Permafrost and Periglacial Processes, 2012, 23: 52-68. [31] 程国栋. 我国高海拔多年冻土地带性规律之探讨. 地理学报, 1984, 39(2): 185-193. [Cheng Guodong. Problems on zonation of high-altitude permafrost. Acta Geographica Sinica, 1984, 39(2): 185-193.] [32] 吴青柏, 李新, 李文君. 青藏公路沿线冻土区域分布计算机模拟与制图. 冰川冻土, 2000, 22(4): 323-326. [Wu Qinbo, Li Xin, Li Wenjun. Computer simulation and mapping of the regional distribution of permafrost along the Qinghai-Xizang Highway. Journal of Glaciology and Geocryology, 2000, 22(4): 323-326.] [33] Li X, Cheng G D, Chen X Z. Response of permafrost to global change on the Qinghai-Xizang Plateau-A GIS-aided model. In: Lewkowicz A G, Allard M. Permafrost-Seventh International Conference (Proceedings). Centre d'études nordiques. Université Lavall: Québec, 1998: 657-661. [34] Li X, Cheng G D. A GIS-aided response model of high altitude permafrost to global change. Science in China: Series D, 1999, 29(2), 185-192. [35] Zhao S M, Cheng W M, Zhou C H, et al. Simulation of decadal alpine permafrost distributions in the Qilian Mountains over past 50 years by using Logistic Regression Model. Cold Regions Science and Technology, 2012, 73: 32-40. [36] Cheng W M, Zhao S M, Zhou C H, et al. Simulation of the Decadal Permafrost Distribution on the Qinghai-Tibet Plateau (China) over the Past 50 Years. Permafrost and Periglacial Processes, 2012, 23(4): 292-300. [37] 中华人民共和国地貌图集编辑委员会. 中华人民共和国地貌图集(1:1000000). 北京: 科学出版社, 2009. [Editorial Committee of Geomorphological Atlas of the People's Republic of China. Geomorphological Atlas of the People's Republic of China (1:1000000). Beijing: Science Press, 2009.] |
[1] | 郝梦雅,任志远,孙艺杰,赵胜男. 关中盆地生态系统服务的权衡与协同关系动态分析[J]. 地理研究, 2017, 36(3): 592-602. |
[2] | 王亚军,马玉贞,鲁瑞洁,高尚玉. 祁连山东延余脉——兴隆山树木径向生长记录的公元1845年来夏季NDVI变化[J]. 地理研究, 2016, 35(4): 653-663. |
[3] | 师宇,楼小凤,王广河. 气溶胶对北京地区云和降水影响的模拟研究[J]. 地理研究, 2016, 35(10): 1912-1924. |
[4] | 孟治国, 平劲松, 徐懿, 陈圣波, 陈思. 厚度对月壤微波辐射亮温的影响[J]. 地理研究, 2014, 33(6): 1015-1022. |
[5] | 李金亚, 徐斌, 杨秀春, 金云翔, 李亚云, 张济, 赵莉娜, 李润林. 锡林郭勒盟草原沙化动态变化及驱动力分析——以正蓝旗为例[J]. 地理研究, 2011, 30(9): 1669-1682. |
[6] | 臧淑英, 王凌云, 那晓东. 基于经济驱动因子的土地利用结构变化区域差异分析——以哈大齐工业走廊为例[J]. 地理研究, 2011, 30(2): 224-232. |
[7] | 胡金明,李杰,袁寒,董云霞. 纳帕海湿地季节性景观格局动态变化及其驱动[J]. 地理研究, 2010, 29(5): 899-908. |
[8] | 陈彦光. 地理学多视角研究方法——Braess网络车流分配过程的理论分析与数值计算[J]. 地理研究, 2008, 27(6): 1367-1380. |
[9] | 李月臣. 中国北方13省市区生态安全动态变化分析[J]. 地理研究, 2008, 27(5): 1150-1161. |
[10] | 王仕琴, 邵景力, 宋献方, 张永波, 周小元, 霍志彬. 地下水模型MODFLOW和GIS在华北平原地下水资源评价中的应用[J]. 地理研究, 2007, 26(5): 975-983. |
[11] | 许娟, 张百平, 朱运海, 孙然好. 阿尔金山-祁连山山地植被垂直带谱分布及地学分析[J]. 地理研究, 2006, 25(6): 977-984. |
[12] | 李新坡, 莫多闻, 朱忠礼. 祁连山、贺兰山与吕梁山山前冲积扇上的农地对比[J]. 地理研究, 2006, 25(6): 985-993. |
[13] | 刘录三, 邵雪梅, 梁尔源, 王丽丽. 祁连山中部祁连圆柏生长与更新方式的树轮记录[J]. 地理研究, 2006, 25(1): 53-61. |
[14] | 李雪铭, 张春花, 周连义, 杨俊. 城市人工地貌过程对城市化的响应——以大连市为例[J]. 地理研究, 2005, 24(5): 785-793. |
[15] | 李国胜, 王海龙, 李柏良. 渤海风驱-潮致拉格朗日余流的数值模拟与季相时空变异[J]. 地理研究, 2005, 24(3): 359-370. |
|