地理研究 ›› 2015, Vol. 34 ›› Issue (4): 631-643.doi: 10.11821/dlyj201504003

• • 上一篇    下一篇

气候模式同站点插值外推气象数据的比较

殷刚1,2,3(), 陈曦1, 塔西甫拉提∙特依拜2, 邵华1, 白磊1,2,3, 胡增运1, 张弛1(), 徐婷4   

  1. 1. 中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室, 乌鲁木齐 830011
    2. 新疆大学, 乌鲁木齐 830046
    3. 中国科学院大学, 北京 100049
    4. 新疆伊犁州气象局, 伊宁 835000
  • 收稿日期:2014-09-21 修回日期:2015-01-05 出版日期:2015-04-10 发布日期:2015-06-11
  • 作者简介:

    作者简介:殷刚(1971- ),男,博士研究生,研究方向为气象学。E-mail: chinabluewater@sina.com

  • 基金资助:
    国家重大科学研究计划课题(2014CB954204);国家自然科学基金项目(41361140361,11401569)

A comparison study between site-extrapolation-based and regional climate model-simulated climate datasets

Gang YIN1,2,3(), Xi CHEN1, Tashpolat TIYIP2, Hua SHAO1, Lei BAI1,2,3, Zengyun HU1, Chi ZHANG1(), Ting XU1   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China
    2. Xinjiang University, Urumqi 830046, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. The Yili Weather Bureau in Xinjiang, Yining 835000, Xinjiang, China
  • Received:2014-09-21 Revised:2015-01-05 Online:2015-04-10 Published:2015-06-11

摘要:

在气象站稀疏的中亚荒漠地区采用基于大气物理机制的区域气候模式,可获得高分辨率格点气象资料进行气候变化研究。针对中亚地区1958-2001年的气候变化,采用RegCM区域气候模式对ERA40和NCEP/NCAR两套气象再分析数据进行动力降尺度至40 km,并将结果同三套基于气象站点插值外推的格点数据(CRU、WM和APHRO)进行比较。所有数据一致表明,1960年代以来新疆地区的气温显著增加,南疆地区降水增加、天山山区降水减少。除APHRO外,数据都表明北疆地区降水呈增加趋势。RegCM模拟的气温和降水数据与站点外推数据空间分布格局基本一致;但RegCM数据年平均气温低于站点外推数据,RegCM数据在新疆山区的年降水量是站点外推数据年降水量的1.3倍。由于研究区内73%的气象站点分布在中山带以下的干热气候区,站点外推数据可能低估山区降水并高估该区域气温。与站点插值外推的格点数据相比,区域气候模式具有能细致描述区域内中小尺度的地形/下垫面特征、更精确反映气象要素空间变异格局的能力。但因为缺乏足够的地面观测以及高精度遥感反演气象数据,当前尚无法全面评估区域气候模式在中亚地区尤其是山区的模拟精度。

关键词: 区域气候模式, 站点插值外推, 气候变化, 中亚

Abstract:

Regional Climate Model (RegCM) simulations, which is based on the fundamental physical and metrological mechanisms, could produce high-resolution climate dataset, without being limited by the availability of meteorological stations in Central Asia. In order to analyze the climate change in Xinjiang from 1958 to 2001, this study used the RegCM model to downscale the ERA40 and NCEP/NCAR reanalysis datasets to a 40-km resolution, and compared the simulation results with three widely used extrapolation datasets (CRU, WM and APHRO). All datasets indicated increased temperature in Xinjiang, increased precipitation in southern Xinjiang, and decreased precipitation in the Tianshan mountainous areas. All datasets except for the APHRO interpolated data indicated increased precipitation in northern Xinjiang. Our analysis showed similar spatial patterns in temperature and precipitation between the RegCM simulated and the extrapolation datasets. However, the simulated regional mean temperature was -3℃ lower than that of the extrapolated datasets. The simulated precipitation in the Tianshan mountainous areas was about twice the value of the extrapolated datasets. Because 73% of the meteorological stations in the study located at the low-mountain areas or the desert plains were in relatively hot and dry climate regimes, extrapolation datasets based on observations at these stations tended to overestimate temperature and underestimate precipitation. Compared with the extropolation method, regional climate modelling considers the detailed topography/landsurface characteristics in the study region at meso-/micro-scales, and is capable to reflect the spatial variation of major climatological elements with higher precision. However, due to limited sparse field observations and a lack of high-resolution remote-sensing-based climate datasets, we are currently unable to fully evaluate the accuracy of the model simulated climate datasets in central Asia, especially in the mountainous areas.

Key words: regional climate model, climate extrapolation, climate change, Central Asia