地理研究 ›› 2015, Vol. 34 ›› Issue (4): 677-690.doi: 10.11821/dlyj201504007
周旻曦1(), 刘永学2,3,4(
), 李满春2,3,4, 孙超1, 邹伟1
收稿日期:
2014-10-25
修回日期:
2015-01-22
出版日期:
2015-04-10
发布日期:
2015-04-10
作者简介:
作者简介:周旻曦(1991- ),男,江苏宜兴人,硕士,主要从事遥感图像处理与模式识别研究。E-mail:
基金资助:
Minxi ZHOU1(), Yongxue LIU2,3,4(
), Manchun LI2,3,4, Chao SUN1, Wei ZOU1
Received:
2014-10-25
Revised:
2015-01-22
Online:
2015-04-10
Published:
2015-04-10
摘要:
南海珊瑚岛礁资源极为丰富,实时、快速、高效、准确地获取大范围珊瑚岛礁地貌遥感信息具有现实意义。研究提出了一种双尺度转化下的模型与数据混合驱动的岛礁地貌信息提取框架,并设计了珊瑚岛礁地貌分类体系及相应技术流程:首先采用自上而下模型驱动的GVF Snake模型进行宏观地理分带的粗分割,然后采用自下而上数据驱动的云影极值抑制下多阈值OTSU分类算法进行微观地貌类型的精细分类,最终利用区域生长算法提取离散分布的暗沙、暗滩等浅水地貌单元。针对西沙永乐环礁利用CBERS-02B数据进行实验,精度验证表明:珊瑚岛礁地貌遥感信息提取方法总体精度优于经典数据驱动的监督分类算法,且具有抗噪能力强、顾及空间拓扑关系、自动灵活等特点。
周旻曦, 刘永学, 李满春, 孙超, 邹伟. 多目标珊瑚岛礁地貌遥感信息提取方法——以西沙永乐环礁为例[J]. 地理研究, 2015, 34(4): 677-690.
Minxi ZHOU, Yongxue LIU, Manchun LI, Chao SUN, Wei ZOU. Geomorphologic information extraction for multi-objective coral islands from remotely sensed imagery: A case study for Yongle Atoll, South China Sea[J]. GEOGRAPHICAL RESEARCH, 2015, 34(4): 677-690.
表1
南海珊瑚岛礁地貌分类体系及遥感解译标志"
制图要素 | 地貌类型/地物类别 | 地貌/地物分类定义 | 遥感影像解译标志(波段组合R3G2B1) | 最佳解译波段/组合(CBERS-02B) | |
---|---|---|---|---|---|
一级类 | 二级类 | ||||
地貌类型 | 向海坡 | - | 从礁坪外缘坡折线向海的水下斜坡 | 礁缘扩散性边缘 | I |
礁前 | - | 由礁脊向海延伸的坡度大于礁格架的区域,多为碎屑礁块 | 礁坪礁缘呈淡蓝色面状 | I、II | |
礁坪 | 礁脊 | 生物碎屑物固结、瘤化形成的堆积带,成为礁前、礁坪的分界线 | 礁前白色线状突起带 | II、IV | |
槽沟 | 突起脊由造礁珊瑚生长堆积而成,底部由珊瑚碎石和碳酸盐砂铺垫 | 发育延伸方向垂直于礁前陡坡,呈韵律条带状 | II | ||
珊瑚生长带 | 内礁坪中部低洼平坦、水动力平静,是抗浪性差的珊瑚群落的优良生长区 | 呈暗灰色,地貌破碎度向礁坪递增 | I | ||
礁坑发育带 | 内礁坪向澙湖不均匀扩展,发育大量深而大的礁坑,坑底堆积生物砾块 | 呈灰蓝色,地貌破碎度相对较高 | I、II | ||
澙湖 | 澙湖坡 | 礁坪内缘至澙湖底的斜坡地带 | 礁后扩散性边缘 | I、III | |
澙湖盆 | 澙湖中心地势较为平坦的地貌单元 | 呈面状分布,表现为深蓝色块状区域 | III | ||
澙湖点礁 | 从澙湖坡或澙湖底上显著突起的礁体 | 在澙湖内呈点状灰白色 | III | ||
潮汐通道 | - | 澙湖水体与外海水体进行交换的通道 | - | - | |
暗沙/暗滩 | - | 发育在环礁边缘,低潮时 不露出水面,多有珊瑚生长 | 影像上有微弱信息,呈浅灰蓝色 | II、III | |
灰沙岛 | 沙滩 | 出露海面,表面多覆盖珊瑚砂砾 | 分布岛外缘,呈亮白色 | II、IV | |
沙丘 | 灰沙岛上隆起的沙质土丘 | 分布岛中央,呈棕黄色 | III、IV | ||
地物类型 | 植被 | 灰沙岛上存在植物覆盖的区域 | 分布岛中央,呈绿色 | II、IV | |
云影 | 海面漂浮的云及其阴影 | 亮白色斑块及对应暗斑 | IV |
[1] | 汪业成, 刘永学, 李满春, 等. 基于场强模型的南沙岛礁战略地位评价. 地理研究, 2013, 32(12): 2292-2301. |
[Wang Yecheng, Liu Yongxue, Li Manchun, et al.The strategic position of Spratly Islands: An evaluation based on the field spread model. Geographical Research, 2013, 32(12): 2292-2301.] | |
[2] | Webb A P, Kench P S.The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Global and Planetary Change, 2010, 72(3): 234-246. |
[3] | Andréfouët S, Berkelmans R, Odriozola L, et al.Choosing the appropriate spatial resolution for monitoring coral bleaching events using remote sensing. Coral Reefs, 2002, 21(2): 147-154. |
[4] | Hatcher B G.Coral reef ecosystems: How much greater is the whole than the sum of the parts? Coral Reefs, 1997, 16(1): S77-S91. |
[5] | Mumby P J, Edwards A J.Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of Environment, 2002, 82(2): 248-257. |
[6] | Hedley J, Roelfsema C, Koetz B, et al.Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sensing of Environment, 2012, 120: 145-155. |
[7] | Walker B K, Riegl B, Dodge R E.Mapping coral reef habitats in southeast Florida using a combined technique approach. Journal of Coastal Research, 2008, 24(5): 1138-1150. |
[8] | Joyce K E, Phinn S R, Roelfsema C M, et al.Combining Landsat ETM+ and Reef Check classifications for mapping coral reefs: A critical assessment from the southern Great Barrier Reef, Australia. Coral Reefs, 2004, 23(1): 21-25. |
[9] | Hochberg E J, Andréfouët S, Tyler M R.Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(7): 1724-1729. |
[10] | Phinn S R, Roelfsema C M, Mumby P J.Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. International Journal of Remote Sensing, 2011, 33(12): 3768-3797. |
[11] | Palandro D A, Andréfouët S, Hu C, et al.Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984-2002). Remote Sensing of Environment, 2008, 112(8): 3388-3399. |
[12] | Knudby A, Ledrew E, Brenning A.Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sensing of Environment, 2010, 114(6): 1230-1241. |
[13] | Purkis S J.A "Reef-Up" approach to classifying coral habitats from IKONOS imagery. Geoscience and Remote Sensing, IEEE Transactions on, 2005, 43(6): 1375-1390. |
[14] | Mumby P J, Harborne A R.Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs. Biological Conservation, 1999, 88(2): 155-163. |
[15] | Andréfouët S, Guzman H.Coral reef distribution, status and geomorphology-biodiversity relationship in Kuna Yala (San Blas) archipelago, Caribbean Panama. Coral Reefs, 2005, 24(1): 31-42. |
[16] | Andréfouët S, Kramer P, Torres-Pulliza D, et al.Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 2003, 88(1): 128-143. |
[17] | Yamano H, Tamura M.Detection limits of coral reef bleaching by satellite remote sensing: simulation and data analysis. Remote Sensing of Environment, 2004, 90(1): 86-103. |
[18] | Leon J, Woodroffe C D.Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. International Journal of Geographical Information Science, 2011, 25(6): 949-969. |
[19] | Andréfouët S, Muller-Karger F E, Hochberg E J, et al. Change detection in shallow coral reef environments using Landsat 7 ETM+ data. Remote Sensing of Environment, 2001, 78(1-2): 150-162. |
[20] | Brock J C, Wright C W, Clayton T D, et al.LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs, 2004, 23(1): 48-59. |
[21] | Lim A, Hedley J D, Ledrew E, et al.The effects of ecologically determined spatial complexity on the classification accuracy of simulated coral reef images. Remote Sensing of Environment, 2009, 113(5): 965-978. |
[22] | Wettle M, Brando V E, Dekker A G.A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef. Remote Sensing of Environment, 2004, 93(1): 188-197. |
[23] | Capolsini P, Andréfouët S, Rion C, et al.A comparison of Landsat ETM+, SPOT HRV, IKONOS, ASTER, and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Canadian Journal of Remote Sensing, 2003, 29(2): 187-200. |
[24] | Botha E J, Brando V E, Anstee J M, et al.Increased spectral resolution enhances coral detection under varying water conditions. Remote Sensing of Environment, 2013, 131: 247-261. |
[25] | Hedley J D, Harborne A R, Mumby P J.Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. International Journal of Remote Sensing, 2005, 26(10): 2107-2112. |
[26] | Hochberg E J, Atkinson M J, Andréfouët S.Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 2003, 85(2): 159-173. |
[27] | Hochberg E J, Atkinson M J.Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sensing of Environment, 2003, 85(2): 174-189. |
[28] | Lundblad E R, Wright D J, Miller J, et al.A benthic terrain classification scheme for American Samoa. Marine Geodesy, 2006, 29(2): 89-111. |
[29] | Spencer T, Viles H.Bioconstruction, bioerosion and disturbance on tropical coasts: Coral reefs and rocky limestone shores. Geomorphology, 2002, 48(1): 23-50. |
[30] | Naylor L A, Viles H A, Carter N.Biogeomorphology revisited: Looking towards the future. Geomorphology, 2002, 47(1): 3-14. |
[31] | Viles H A, Naylor L A.Biogeomorphology: Editorial. Geomorphology, 2002, 47(1): 1-2. |
[32] | 王国忠. 南海珊瑚礁区沉积学. 北京: 海洋出版社, 2001. |
[Wang Guozhong.Sedimentology of Coral Reef, South China Sea. Beijing: China Ocean Press, 2001.] | |
[33] | 曾昭璇. 中国环礁的类型划分. 海洋通报. 1982, (4): 43-50. |
[Zeng Zhaoxuan.Classification of atolls in China. Marine Science Bulletin, 1982, (4): 43-50.] | |
[34] | 张明书, 何起祥, 业治铮, 等. 风驱生物礁相模式: 一种新的工作假说. 海洋地质与第四纪地质, 1987, 7(2): 1-9. |
[Zhang Mingshu, He Qixiang, Ye Zhizheng, et al.Wind-driven model of reef facies: A new working hypothesis. Marine Geology & Quaternary Geology, 1987, 7(2): 1-9.] | |
[35] | 赵焕庭, 温孝胜, 孙宗勋, 等. 南沙群岛珊瑚礁自然特征. 海洋学报, 1996, 18(5): 61-70. |
[Zhao Huanting, Wen Xiaosheng, Sun Zongxun, et al.Natural characteristics of coral reefs, Nansha Islands of South China Sea. Acta Oceanologica Sinica, 1996, 18(5): 61-70.] | |
[36] | 沈建伟, 杨红强, 王月, 等. 西沙永兴岛珊瑚礁坪的群落动态和浅水碳酸盐沉积特征. 中国科学: 地球科学, 2014, 44(3): 472-487. |
[Shen Jianwei, Yang Hongqiang, Wang Yue, et al.Coral community dynamics and shallow-water carbonate deposition of the reef-flat around Yongxing Island, the Xisha Islands. Science China: Earth Sciences, 2014, 44(3): 472-487.] | |
[37] | 孙宗勋, 詹文欢, 朱俊江. 南沙群岛珊瑚礁岩体结构特征及工程地质分带. 热带海洋学报, 2004, 23(3): 11-20. |
[Sun Zongxun, Zhan Wenhuan, Zhu Junjiang.Rockness structure and engineering geological zones of coral reefs, Nansha islands of South China Sea. Journal of Tropical Oceanography, 2004, 23(3): 11-20.] | |
[38] | Zitello A G, Bauer L J, Battista T A, et al.Shallow-Water Benthic Habitats of St. John, U.S. Virgin Islands. NOAA Technical Memorandum NOS NCCOS, 2009: 53. |
[39] | Hamylton S M, Spencer T.Geomorphological modelling of tropical marine landscapes: Optical remote sensing, patches and spatial statistics. Continental Shelf Research, 2011, 31(2): S151-S161. |
[40] | Maeder J, Narumalani S, Rundquist D C, et al.Classifying and mapping general coral-reef structure using IKONOS data. Photogrammetric Engineering and Remote Sensing, 2002, 68(12): 1297-1306. |
[41] | Mumby P J, Skirving W, Strong A E, et al.Remote sensing of coral reefs and their physical environment. Marine Pollution Bulletin, 2004, 48(3): 219-228. |
[42] | 孙宗勋, 赵焕庭. 南沙群岛珊瑚礁动力地貌特征. 热带海洋, 1996, 15(2): 53-60. |
[Sun Zongxun, Zhao Huanting.Features of dynamic geomorphology of coral reefs in Nansha Islands. Tropic Oceanology, 1996, 15(2): 53-60.] | |
[43] | 邹亚荣, 梁超, 朱海天. 基于QuickBird影像上珊瑚礁发育状况监测实验研究. 海洋学报, 2012, 34(2): 57-62. |
[Zou Yarong, Liang Chao, Zhu Haitian. Research about monitoring the development status of coral reefs based on QuickBird Data. Acta Oceanologica Sinica, 2012, 34(2): 57-62.] | |
[44] | Kass M, Witkin A, Terzopoulos D.Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331. |
[45] | Xu C, Prince J L.Snakes, shapes, and gradient vector flow. Image Processing, IEEE Transactions on, 1998, 7(3): 359-369. |
[46] | Li B, Acton S T.Automatic active model initialization via Poisson inverse gradient. Image Processing, IEEE Transactions on, 2008, 17(8): 1406-1420. |
[47] | Choi H, Bindschadler R.Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sensing of Environment, 2004, 91(2): 237-242. |
[48] | Huang C, Thomas N, Goward S N, et al.Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. International Journal of Remote Sensing, 2010, 31(20): 5449-5464. |
[49] | Xu X, Xu S, Jin L, et al.Characteristic analysis of Otsu threshold and its applications. Pattern Recognition Letters, 2011, 32(7): 956-961. |
[50] | 业治铮, 何起祥, 张明书, 等. 西沙群岛岛屿类型划分及其特征的研究. 海洋地质与第四纪地质, 1985, 5(1): 1-13. |
[Ye Zhizheng, He Qixiang, Zhang Mingshu, et al.Classification and characteristics of islands in the Xisha Archipelago. Marine Geology & Quaternary Geology, 1985, 5(1): 1-13.] | |
[51] | 赵焕庭. 西沙群岛考察史. 地理研究, 1996, 15(4): 55-65. |
[Zhao Huanting.History of expeditions to Xisha Islands. Geographical Research, 1996, 15(4): 55-65.] |
[1] | 王翔, 朱长明, 张新, 王伟胜, 方晖. 1972—2019年萨雷兹堰塞湖遥感时序监测与水文特征过程分析[J]. 地理研究, 2021, 40(1): 67-80. |
[2] | 冀琴, 刘睿, 杨太保. 1990—2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究, 2020, 39(10): 2403-2414. |
[3] | 张志赟, 刘辉, 杨义炜. 资源枯竭型城市空间扩展进程研究——以淮北市为例[J]. 地理研究, 2018, 37(1): 183-198. |
[4] | 洪长桥, 金晓斌, 陈昌春, 王慎敏, 项晓敏, 杨绪红, 顾铮鸣, 周寅康. 基于多源遥感数据融合的土地整治区产能动态监测:方法与案例[J]. 地理研究, 2017, 36(9): 1787-1800. |
[5] | 任启龙, 王利, 韩增林, 徐晓勇, 赵东霞. 基于城市年轮模型的城市扩展研究——以沈阳市为例[J]. 地理研究, 2017, 36(7): 1364-1376. |
[6] | 高浩, 张甲珅, 郑伟, 刘诚. 基于不同分辨率卫星数据的林火排放对比研究[J]. 地理研究, 2017, 36(5): 850-860. |
[7] | 刘琼欢, 张镱锂, 刘林山, 李兰晖, 祁威. 七套土地覆被数据在羌塘高原的精度评价[J]. 地理研究, 2017, 36(11): 2061-2074. |
[8] | 郭剑, 陈实, 徐斌, 申格, 金云翔, 张玉静, 杨秀春. 基于SPOT-VGT数据的锡林郭勒盟草原返青期遥感监测[J]. 地理研究, 2017, 36(1): 37-48. |
[9] | 谢启姣, 刘进华, 胡道华. 武汉城市扩张对热场时空演变的影响[J]. 地理研究, 2016, 35(7): 1259-1272. |
[10] | 陈晨, 郑江华, 刘永强, 许仲林. 近20年中国阿尔泰山区冰川湖泊对区域气候变化响应的时空特征[J]. 地理研究, 2015, 34(2): 270-284. |
[11] | 胡云锋, 张千力, 戴昭鑫, 黄玫, 闫慧敏. 多源遥感土地覆被产品在欧洲地区的一致性分析[J]. 地理研究, 2015, 34(10): 1839-1852. |
[12] | 李行, 张连蓬, 姬长晨, 刘红樱, 黄巧华. 基于遥感和GIS的江苏省海岸线时空变化[J]. 地理研究, 2014, 33(3): 414-426. |
[13] | 朱冬, 高抒. 江苏中部海岸互花米草扩展对滩涂围垦的响应[J]. 地理研究, 2014, 33(12): 2382-2392. |
[14] | 王蕾, 张树文, 姚允龙. 绿地景观对城市热环境的影响——以长春市建成区为例[J]. 地理研究, 2014, 33(11): 2095-2104. |
[15] | 陈实, 高超, 徐斌, 金云翔, 李金亚, 马海龙, 赵芬, 郭剑, 杨秀春. 新疆石河子农区土壤含盐量定量反演及其空间格局分析[J]. 地理研究, 2014, 33(11): 2135-2144. |
|