Please wait a minute...
 首页  期刊介绍 期刊订阅 广告合作 联系我们 English
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
地理研究  2015, Vol. 34 Issue (11): 2084-2094    DOI: 10.11821/dlyj201511007
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
青藏高原气温空间分布规律及其生态意义
姚永慧1(),张百平1,2()
1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
2. 江苏省地理信息资源开发与利用协同创新中心,南京 210023
The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Plateau
YAO Yonghui1(),ZHANG Baiping1,2()
1. State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
全文: PDF(1271 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

作为世界第三极的青藏高原,其巨大的块体产生了显著的夏季增温作用,对亚洲乃至全球气候都具有重大影响。但由于高原自然条件严酷,山区气象观测台站很少,气象资料极度匮乏;如果依靠台站数据进行空间插值获得高原气温的空间分布数据,会由于插值点过少而产生较大误差并可能掩盖一些空间信息,因而难以全面反映高原气温的空间分布规律。利用基于MODIS地表温度数据估算的青藏高原气温数据,详细分析各月气温及重要等温线的空间分布格局,并结合林线和雪线数据,初步探讨了高原气温空间分布格局对高原地理生态格局的重要影响。研究表明:① 等温线的海拔高度自高原东北部、东部边缘向内部逐渐升高,等温线在高原内部比东部边缘高500~2000 m,表明相同海拔高度上气温自边缘向高原内部逐渐升高。② 高原西北部的羌塘高原、可可西里为高原的寒冷区,全年有7个月的气温低于0 ℃,3~4个月的气温低于-10 ℃;青藏高原南部(喜马拉雅山北坡—冈底斯山南坡)和中部(冈底斯山北坡—唐古拉山南坡)是高原的温暖区,全年有5个月的气温能达到5~10 ℃,有3个月的气温能超过10 ℃,尤其是拉萨—林芝—左贡一带在3500~4000 m以下的地区最冷月均温也能高于0 ℃。③ 北半球最高雪线和林线分别分布于高原的西南部和东南部,表明高原气温空间分布特征对本地的地理生态格局具有重要影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚永慧
张百平
关键词 气温林线雪线等温线空间格局青藏高原    
Abstract

The immense and towering Tibetan Plateau (TP) acts as a heating source and shapes the climate of not only the Eurasian continent but also the entire world. Currently, air temperature of the plateau is usually obtained from discrete meteorological observational data using a series of statistical analyses and spatial interpolation. However, the interpolation accuracy is low due to the scarcity of meteorological observation stations, and little is quantitatively known about the detailed temperature pattern of the TP. According to Modis-based estimated air temperature data, this paper firstly studies the detailed spatial pattern of air temperature of the TP; Then it analyzes the spatial changes of isotherm altitudes of -10℃, -5℃, 0℃, 5℃, 10℃ for every month. Isotherm altitudes are extracted from Aster GDEM; Thirdly, this paper discusses the implication of air temperature of TP for treelines and snowlines based on 148 snowline data and 267 treeline data. The results show that: 1) isotherms have a trend of rising from the eastern and northeastern edges of the plateau to the interior and about 500-2000 m higher in the interior than in the eastern and northeastern edges; 2) the northwestern plateau, or the Qiangtang plateau and the Hoh Xil region, are the coldest regions of the TP, where air temperatures are below 0℃ for seven months and lower than -10 ℃ for three or four months in a year; the southern and central plateau, especially the north flank of Himalaya - the south flank of Gangdisê Mts., the north flank of Gangdisê Mts. - the south flank of Tanggula Mts., and the great river valleys, are quite warm, with monthly mean air temperatures between 5-10 ℃ for five months and above 10 ℃ for three months in a year; especially, air temperature of the coldest month is above 0℃ below the elevations of 3500-4500 m at Lhasa, Linzhi and Zuogong. 3) The highest treeline and snowline of the Northern Hemisphere are distributed in the southeastern and southwestern parts of the plateau, respectively, revealing a significant effect of air temperature on the geo-ecological pattern of the TP.

Key wordsair temperature    treeline    snowline    isotherm    spatial pattern    Tibetan Plateau
收稿日期: 2015-04-20      出版日期: 2015-11-24
基金资助:国家自然科学基金项目(41571099, 41001278)
引用本文:   
姚永慧, 张百平. 青藏高原气温空间分布规律及其生态意义[J]. 地理研究, 2015, 34(11): 2084-2094.
YAO Yonghui, ZHANG Baiping. The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Plateau. GEOGRAPHICAL RESEARCH, 2015, 34(11): 2084-2094.
链接本文:  
http://www.dlyj.ac.cn/CN/10.11821/dlyj201511007      或      http://www.dlyj.ac.cn/CN/Y2015/V34/I11/2084
Fig. 2  青藏高原夏半年0 ℃、5 ℃、10 ℃、-5 ℃等温线分布格局
Fig. 3  冬半年青藏高原气温及0 ℃、-5 ℃、-10 ℃等温线分布格局
Fig. 1  研究区范围及林线、雪线分布图
[1] 蔡英, 李栋梁, 汤袤苍, 等. 青藏高原近50年来气温的年代际变化. 高原气象, 2003, 22(5): 464-471.http://d.wanfangdata.com.cn/Periodical/gyqx200305006
doi: 10.3321/j.issn:1000-0534.2003.05.006
[1] [Cai Ying, Li Dongliang, Tang Maocang, et al.Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meteorology, 2003, 22(5): 464-471.]
[2] 李生辰, 徐亮, 郭英香, 等. 近34 a青藏高原年气温变化. 中国沙漠, 2006, 26(1): 27-35.http://d.wanfangdata.com.cn/Periodical/zgsm200601005
doi:
[2] [Li Shengchen, Xu Liang, Guo Yinxiang, et al.Change of annual air temperature over Qinghai-Tibet Plateau during recent 34 years. Journal of Desert Research, 2006, 26(1): 27-35.]
[3] 李宗省, 何元庆, 辛惠娟, 等. 我国横断山区1960-2008 年气温和降水时空变化特征. 地理学报, 2010, 65(5): 563-579.http://d.wanfangdata.com.cn/Periodical_dlxb201005006.aspx
[3] [Li Zongxing, He Yuanqing, Xin Huijuan, et al.Spatio-temporal variations of temperature and precipitation in Mts. Hengduan during 1960-2008. Acta Geographica Sinica, 2010, 65(5): 563-579.]
[4] 任雨, 张雪芹, 彭莉莉. 青藏高原1951-2006年气温距平序列的建立与分析.高原气象, 2010, 29(3): 572-578.http://d.wanfangdata.com.cn/Periodical/gyqx201003004
doi:
[4] [Ren Yu, Zhang Xueqin, Peng Lili.Construction and analysis of mean air temperature anomaly series for the Qinghai-Xizang Plateau during 1951-2006. Plateau Meteorology, 2010, 29(3): 572-578.]
[5] 刘桂芳, 卢鹤立. 1961~2005年来青藏高原主要气候因子的基本特征. 地理研究, 2010, 29(12): 2281-2289.http://d.wanfangdata.com.cn/Periodical_dlyj201012017.aspx
[5] [Liu Guifang, Lu Heli.Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years. Geographical Research, 2010, 29(12): 2281-2289.]
[6] 赵东升, 吴绍洪. 近40年青藏高原主要生物温度指标的变化趋势. 地理研究, 2010, 29(3): 431-440.http://d.wanfangdata.com.cn/Periodical/dlyj201003006
[6] [Zhao Dongsheng, Wu Shaohong.Variation of bio-temperature indexes on the Tibetan Plateau in the past 40 years. Geographical Research, 2010, 29(3): 431-440.]
[7] Vogt J, Viau A A, Paquet F.Mapping regional air temperature fields using satellite derived surface skin temperatures. International Journal of Climatology, 1997, 17(14): 1559-1579.http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5/abstract
doi: 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
[8] Barrett E C, Curtis L F.Introduction to Environmental Remote Sensing. New York: Chapman and Hall, 1993.
[9] Goetz S J, Prince S D, Small J.Advances in satellite remote sensing of environmental variables for epidemiological applications. Advances in Parasitology, 2000, 47: 289-307.http://www.sciencedirect.com/science/article/pii/S0065308X00470120
doi: 10.1016/S0065-308X(00)47012-0 pmid: 10997210
[10] Seguin B.Use of surface temperature in agro-meteorology. In: Toselli F. Applications of Remote Sensing to Agro-meteorology. Boston: Kluwer Academic Press, 1991. 221-240.http://www.springerlink.com/content/978-94-009-2235-8
doi: 10.1007/978-94-009-2235-8
[11] 姚永慧, 张百平. 基于MODIS数据的青藏高原气温与增温效应估算. 地理学报, 2013, 68(1): 93-104.http://d.wanfangdata.com.cn/Periodical/dlxb201301011
doi: 10.3969/j.issn.0375-5444.2013.01.011
[11] [Yao Yonghui, Zhang Baiping.MODIS-based estimation of air temperature and heating effect of the Tibetan Plateau. Journal of Geographical Sciences, 2013, 68(1): 93-104.]
[12] Yao Yonghui, Zhang Baiping.MODIS-based estimation of air temperature of the Tibetan Plateau. Journal of Geographical Sciences, 2013, 68(1): 95-107.http://d.wanfangdata.com.cn/Periodical_dlxb-e201304004.aspx
doi: 10.1007/s11442-013-1033-7
[13] 姚永慧, 张百平, 韩芳. 基于MODIS地表温度的横断山区气温估算及其时空规律分析. 地理学报, 2011, 66(7): 917-927.http://d.wanfangdata.com.cn/Periodical/dlxb201107005
[13] [Yao Yonghui, Zhang Baiping, Han Fang.MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis. Acta Geographica Sinica, 2011, 66(7): 917-927.]
[14] Miehe G, Miehe S, Vogel J, et al.Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 2007, 27(2): 169-173.http://www.bioone.org/doi/abs/10.1659/mrd.0792
doi: 10.1659/mrd.0792
[15] Troll C.The upper timberlines in different climatic zones. Arctic and Alpine Research, 1973, 5(3): 3-18.http://www.jstor.org/stable/1550148
[16] 郑度, 李炳元. 青藏高原自然环境的演化与分异. 地理研究, 1990, 9(2): 1-10.http://www.cnki.com.cn/Article/CJFDTotal-DLYJ199002001.htm
[16] [Zheng Du, Li Bingyuan.Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau. Geographical Research, 1990, 9(2): 1-10.]
[17] Shi Yafeng, Zheng Benxing, Li Shijie.Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: Acontroversy to M. Kuhle's ice sheet hypothesis. Chinese Geographical Science, 1992, 2(4): 293-311.http://www.cnki.com.cn/Article/CJFDTotal-ZDKX199204000.htm
[18] 谭靖. 欧亚大陆山地垂直带谱数字集成与分析. 北京: 中国科学院地理科学与资源研究所,2009.http://xueshu.baidu.com/s?wd=paperuri%3A%283a235f2e4fc88a0accbd4f3ce1bf304f%29&amp;filter=sc_long_sign&amp;sc_ks_para=q%3D%E6%AC%A7%E4%BA%9A%E5%A4%A7%E9%99%86%E5%B1%B1%E5%9C%B0%E5%9E%82%E7%9B%B4%E5%B8%A6%E8%B0%B1%E6%95%B0%E5%AD%97%E9%9B%86%E6%88%90%E4%B8%8E%E5%88%86%E6%9E%90&amp;tn=SE_baiduxueshu_c1gjeupa&amp;ie=utf-8
[18] [Tan Jing.Digital integration and Analysis of the Eurasian Mountain Altitudinal Belt. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2009.]
[19] 张百平. 数字山地垂直带谱研究进展. 山地学报, 2008, 26(1): 12-14.http://d.wanfangdata.com.cn/Periodical/sdxb200801003
doi: 10.3969/j.issn.1008-2786.2008.01.003
[19] [Zhang Baiping.Progress in the study on digital mountain altitudinal belts. Journal of Mountain Science, 2008, 26(1): 12-14.]
[20] 赵芳, 张百平, 谭靖, 等. 欧亚大陆山地垂直带数字集成系统的设计与应用. 地球信息科学学报, 2011,13(3): 346-355.http://d.wanfangdata.com.cn/Periodical_dqxxkx201103008.aspx
doi: 10.3724/SP.J.1047.2011.00346
[20] [Zhao Fang, Zhang Baiping, Tan Jing, et al.Structure and function of the digital integrated system for the Eurasian mountain altitudinal belt. Journal of Geo-information Science, 2011, 13(3): 346-355.]
[21] 黄秉维, 郑度, 赵茗茶, 等. 现代自然地理. 北京: 科学出版社, 1999.http://xueshu.baidu.com/s?wd=paperuri%3A%28ce4329575786994b68fb48816bd4e2a7%29&amp;filter=sc_long_sign&amp;sc_ks_para=q%3D%E7%8E%B0%E4%BB%A3%E8%87%AA%E7%84%B6%E5%9C%B0%E7%90%86&amp;tn=SE_baiduxueshu_c1gjeupa&amp;ie=utf-8
[21] [Huang Binwei, Zheng Du, Zhao Mingcha, et al.Physical Geography. Beijing: Science Press, 1999. ]
[22] 廖克. 青藏高原地图集. 北京: 科学出版社,1990.
[22] [Liao Ke.The Atlas of the Tibetan Plateau. Beijing: Science Press, 1990.]
[23] 王传辉, 周顺武, 唐晓萍, 等. 近48年青藏高原强降水量的时空分布特征. 地理科学, 2011, 31(4): 470-477.http://www.cnki.com.cn/Article/CJFDTotal-DLKX201104015.htm
[23] [Wang Chuanhui, Zhou Shunwu, Tang Xiaoping, et al.Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years. Scientia Geographica Sinica, 2011, 31(4): 470-477.]
[24] 吴锡浩. 青藏高原东南部现代雪线和林线及其关系的初步研究. 冰川冻土, 1989, 11(2): 113-124.http://www.cnki.com.cn/Article/CJFDTotal-BCDT198902001.htm
[24] [Wu Xihao.A preliminary study on existing snowline timber line and their relations in southeastern part of the Qinghai-Xizang Plateau. Journal of Glaciology and Geocryology, 1989, 11(2): 113-124.]
[25] 郑远昌, 高生淮, 柴宗新. 试论横断地区自然垂直带. 山地研究, 1986, 4(1): 75-83.
[25] [Zheng Yuanchang, Gao Shenghuai, Chai Zongxin.A preliminary study on the vertical natural zones in the Hengduan Mountainous region. Mountain Research, 1986, 4(1):75-83.]
[26] 叶笃正, 罗四维, 朱抱真. 西藏高原及其附近的流场结构和对流层大气的热量平衡. 气象学报, 1957, 28(2): 108-121.http://www.cnki.com.cn/Article/CJFDTotal-QXXB195702002.htm
[26] [Ye Duzheng, Luo Siwei, Zhu Baozhen.The flow pattern and heat budget in the troposphere over the Tibetan Plateau and surrounding area. Acta Meteorology Sinica, 1957, 28(2): 108-121.]
[27] Flohn H.Some remarks on the annual trend of weather in the Scottish highlands. Quarterly Journal of the Royal Meteorological Society, 1951, 334: 674-675.http://onlinelibrary.wiley.com/doi/10.1002/qj.49707733413/abstract
doi: 10.1002/qj.49707733413
[28] Ye Duzheng.Some aspects of the thermal influences of Qinghai-Tibetan Plateau on the atmospheric circulation. Archives for Meteorology, Geophysics, and Bioclimatology, 1982, 31(3): 205-225.http://xueshu.baidu.com/s?wd=paperuri%3A%28a26548a20027c6c3b17e5bb32e2d48c9%29&amp;filter=sc_long_sign&amp;sc_ks_para=q%3DSome%20aspects%20of%20the%20thermal%20influences%20of%20the%20Qinghai-Tibetan%20plateau%20on%20the%20atmospheric%20circulation&amp;tn=SE_baiduxueshu_c1gjeupa&amp;ie=utf-8
[1] 徐韵佳,戴君虎,王焕炯,刘亚辰. 1985-2012年哈尔滨自然历主要物候期变动特征及对气温变化的响应[J]. 地理研究, 2015, 34(9): 1662-1674.
[2] 郭春霞,诸云强,孙伟. 不同时间尺度、季节的气温数据空间平稳特征及其对插值结果的影响[J]. 地理研究, 2015, 34(9): 1675-1684.
[3] 吴江洁,孙斌栋. 居民就业可达性的空间分布及对收入的影响——基于上海都市区的实证研究[J]. 地理研究, 2015, 34(9): 1744-1754.
[4] 杨传开,宁越敏. 中国省际人口迁移格局演变及其对城镇化发展的影响[J]. 地理研究, 2015, 34(8): 1492-1506.
[5] 韩晔,周忠学. 西安市绿地景观吸收雾霾生态系统服务测算及空间格局[J]. 地理研究, 2015, 34(7): 1247-1258.
[6] 蒋海兵, 张文忠, 祁毅, 蒋金亮. 高速铁路与出行成本影响下的全国陆路可达性分析[J]. 地理研究, 2015, 34(6): 1015-1028.
[7] 公丕萍,宋周莺,刘卫东. 中国与俄罗斯及中亚地区的贸易格局分析[J]. 地理研究, 2015, 34(5): 812-824.
[8] 翟真, 王青. 岷江上游林树下线地理分布格局及其空间移动特征[J]. 地理研究, 2015, 34(11): 2105-2112.
[9] 韩增林, 李彬, 张坤领. 中国城乡基本公共服务均等化及其空间格局分析[J]. 地理研究, 2015, 34(11): 2035-2048.
[10] 谭雪兰, 刘卓, 贺艳华, 谭洁, 张炎思, 周国华. 江南丘陵区农村居民点地域分异特征及类型划分——以长沙市为例[J]. 地理研究, 2015, 34(11): 2144-2154.
[11] 张宏文, 张学珍, 张丽娟. WRF模拟的1980-2000年中国东北农业开发对气候的影响[J]. 地理研究, 2015, 34(10): 1853-1863.
[12] 郑蕾, 宋周莺, 刘卫东, 刘毅. 中国西部地区贸易格局与贸易结构分析[J]. 地理研究, 2015, 34(10): 1933-1942.
[13] 段平, 盛业华, 李佳, 吕海洋, 张思阳. 自适应的IDW插值方法及其在气温场中的应用[J]. 地理研究, 2014, 33(8): 1417-1426.
[14] 李亚婷, 潘少奇, 苗长虹. 中原经济区县际经济联系网络结构及其演化特征[J]. 地理研究, 2014, 33(7): 1239-1250.
[15] 林李月, 朱宇, 梁鹏飞, 肖宝玉. 基于六普数据的中国流动人口住房状况的空间格局[J]. 地理研究, 2014, 33(5): 887-898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《地理研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn