地理研究 ›› 2016, Vol. 35 ›› Issue (7): 1259-1272.doi: 10.11821/dlyj201607004

• 研究论文 • 上一篇    下一篇

武汉城市扩张对热场时空演变的影响

谢启姣1,2(), 刘进华3, 胡道华1()   

  1. 1. 湖北大学资源环境学院,武汉 430062
    2. 区域开发与环境响应湖北省重点实验室,武汉 430062
    3. 同济大学建筑与城市规划学院,上海 200092
  • 收稿日期:2016-01-24 修回日期:2016-05-10 出版日期:2016-07-30 发布日期:2016-07-26
  • 作者简介:

    作者简介:谢启姣(1979- ),女,湖北武汉人,博士,副教授,主要从事城市地理及城市生态研究。E-mail: xieqijiao@126.com

  • 基金资助:
    国家自然科学青年基金项目(41401186);湖北省自然科学基金项目(2014CFB346);区域开发与环境响应湖北省重点实验室开放基金项目[2015(C)003]

Urban expansion and its impact on spatio-temporal variation of urban thermal characteristics:A case study of Wuhan

Qijiao XIE1,2(), Jinhua LIU3, Daohua HU1()   

  1. 1. School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
    2. Key Laboratory of Regional Development and Environmental Response (Hubei Province), Wuhan 430062, China
    3. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
  • Received:2016-01-24 Revised:2016-05-10 Online:2016-07-30 Published:2016-07-26

摘要:

深入分析城市扩张对城市热场时空分布及演变的影响机制,对探求城市热岛效应缓解对策、改善城市生态环境质量意义重大。基于1987年、1996年、2007年和2013年的Landsat影像反演武汉主城区地表温度、提取不透水面值,定量研究两者的关系,探讨城市建设对城市热场空间分布的影响;采用不透水面和正规化地表温度差值影像动态定量1987-2013年武汉城市扩张对热场时空演变的影响机制。结果表明:① 1987-2013年,武汉不透水面不断增加,城市建设强度加强,城市扩张明显,但是不同时期表现出不同的扩张方向、范围和模式。② 城市热岛效应主要发生在相应时期的建成区和武钢工业区,而城市大型水体则表现出明显的“冷廊效应”和“冷岛效应”;1987-1996年、1996-2007年和2007-2013年热状况恶化面积分别为382.0 km2、305.1 km2和105.7 km2,热状况总体呈现恶化趋势。③ 不透水面指数能较好地解释热场空间的异质性,两者回归方程的系数为0.751~0.923,不透水面值每增加0.1,正规化地表温度值会增加0.01~0.02。④ 城市热状况变化从改良极显著、改良较显著、无变化、恶化较显著到恶化极显著,对应的不透水面差值由小到大,城市扩张和城市建设强度加大对恶化城市热环境和加剧城市热岛扩展作用明显。

关键词: 遥感, 城市扩张, 热场, 热岛效应, 时空演变, 驱动机制

Abstract:

Understanding the impact of urbanization on urban heat island (UHI) formation and its driving mechanism on UHI variation is crucial to establish appropriate UHI mitigation strategies and improve environmental quality. Landsat imagines acquired on September 26, 1987, October 4, 1996, April 10, 2007 and September 17, 2013 in Wuhan were selected to derive land surface temperature (LST) and impervious surface area (ISA). Quantificative relationship between normalized difference LST (NDLST) and ISA was built to explain the impact of urbanization on thermal distribution. NDLST and ISA difference imagines among the studied years were mapped to visually and quantificatively detect the driving mechanism of urban expansion on thermal variation. Results indicated that: (1) Wuhan experienced an expanding development during 1987-2013, with ISA value continuously increased, while the expanding trend, extent and model differed from each other; (2) Higher temperatures and urban heat island centralized in the urbanized area and industrial area of Wuhan Iron and Steel Company, and the Yangtze River together with other water bodies had relatively low temperatures, thus producing 'cool corridor' and 'cool island'. Thermal deterioration covered 382.0 km2, 305.1 km2 and 105.7 km2 during 1987-1996, 1996-2007 and 2007-2013, respectively, with an descending trend. (3) LST spatial variation could be well explained by ISA value with their regression coefficient ranging from 0.751 to 0.923. NDLST increased by 0.01-0.02 respectively when ISA value increased by 0.1. (4) Thermal variation showed a deteriorating trend from lower ISA value areas to higher ones. Urban expansion was regarded as a powerful driving force in thermal deterioration and UHI effect aggravation.

Key words: remote sensing, urban expansion, thermal characteristics, urban heat island, tempo-spatial variation, driving mechanism