地理研究 ›› 2017, Vol. 36 ›› Issue (11): 2061-2074.doi: 10.11821/dlyj201711003
刘琼欢1,2(), 张镱锂1,2(
), 刘林山1, 李兰晖1,2, 祁威1
收稿日期:
2017-04-24
修回日期:
2017-09-08
出版日期:
2017-11-20
发布日期:
2017-12-21
作者简介:
作者简介:刘琼欢(1990- ),女,湖南永兴人,博士研究生,主要从事土地覆被变化研究。E-mail:
基金资助:
Qionghuan LIU1,2(), Yili ZHANG1,2(
), Linshan LIU1, Lanhui LI1,2, Wei QI1
Received:
2017-04-24
Revised:
2017-09-08
Online:
2017-11-20
Published:
2017-12-21
摘要:
基于羌塘高原8个一级土地覆被类型(包括10个二级土地覆被类型)的6851个样本点,采用混淆矩阵方法,从总体精度、制图精度和用户精度角度评价International Geosphere-Biosphere Program's Data and Information System Cover(IGBPDIS)、Global Land cover mapping at 30 m resolution(GlobeLand 30)、The MODIS Land Cover Type product(MCD12Q1)、Climate Change Initiative Land Cover(CCI-LC)和Global Land Cover 2000(GLC2000)等七套土地覆被数据产品在羌塘高原的精度。结果表明:① 七套数据产品的一级类型和二级类型总体精度普遍偏低,在相对较高的GlobeLand 30和CCI-LC数据中,一级类型总体精度分别为55.09%和53.92%,二级类型分别为46.55%和46.23%;② 草地、裸地和荒漠三个主要一级类型生产者精度最高的数据对应为:GLC 2000(46.19%)、MCD12Q1(39.20%)和IGBPDIS(84.44%)。而三个主要一级类型的用户精度均低于50%。其他覆被类型中,雪被与冰川类型用户精度最高的数据为CCI-LC(92.80%),漏分比例为19.90%;③ 羌塘高原特殊的高原环境与土地覆被分类系统构成原则和标准是影响遥感解译数据精度的主要原因。
刘琼欢, 张镱锂, 刘林山, 李兰晖, 祁威. 七套土地覆被数据在羌塘高原的精度评价[J]. 地理研究, 2017, 36(11): 2061-2074.
Qionghuan LIU, Yili ZHANG, Linshan LIU, Lanhui LI, Wei QI. Accuracy evaluation of the seven land cover data in Qiangtang Plateau[J]. GEOGRAPHICAL RESEARCH, 2017, 36(11): 2061-2074.
表1
七套土地覆被数据"
数据名称 | 整体精度(%) | 验证方法 | 传感器 | 分类方法 | 分辨率 | 年份 | 分类系统类型数 | 链接 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
GLC 2000 | 68.6 | Confidence values statistical sampling | SPOT4 VEGETATION | 非监督分类 | 1 km | 1999-2000 | FAO LCCS (23 classes) | http://bioval.jrc.ec.europa.eu/products/glc2000/products.php | Bartholomé等[ |
IGBPDIS | 66.9 | Statistical sampling of validation working group | AVHRR | 非监督分类 | 1 km | 1992-1993 | USGS IGBP (17 classes) | http://edc2.usgs.gov/glcc/tabgoode_globe.php | Loveland等[27] |
UMD | 65.0 | Evaluated using other digital datasets | AVHRR | 非监督分类、 决策树分类 | 1 km | 1992-1993 | Simplified IGBP (14 classes) | http://www.landcover.org/data/landcover/index.shtml | Hansen等[28] |
MCD12Q1 | 74.8 | Cross-validation | MODIS | 监督分类、决策树分类、神经网络 | 500 m | 2013 | IGBP (17 classes) | http://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/ | Friedl等[29,30] |
GlobCover | 67.5 | Statistical sampling expert's judgement | MERIS FR | 监督分类、 非监督分类 | 300 m | 2009 | UN LCCS (22 classes) | http://due.esrin.esa.int/globcover/ | Bontemps等[31] |
CCI-LC | 74.1 | Sampling-based labeling approach | MERIS Full and Reduced Resolution/ SPOT | 非监督分类 | 300 m | 2008-2012 | UN LCCS (22 classes) | http://maps.elie.ucl.ac.be/CCI/viewer/index.php | Belgium等[32] |
GlobeLand 30 | 80.0 | Knowledge-based interactive verification | Landsat TM, ETM7, HJ-1A/b/ | 基于像元、对象和知识规则分类 | 30 m | 2010 | 11 classes | http://www.globallandcover.com | Chen等[33] |
表2
羌塘高原样本点概况"
类型 | 样本点数量 | 类型定义 | 类型 | 样本点数量 | 类型定义 |
---|---|---|---|---|---|
高寒草甸 | 777 | 由寒冷中生多年生草本植物为主的植物群落覆盖区域,本研究区主要指藏北嵩草草甸、小嵩草(高山嵩草)草甸覆盖区 | 湖泊 | 1157 | 指自然条件下形成的积水区常年水位以下的土地 |
高寒草原 | 1245 | 具有一定御寒能力的、旱生的多年生草本植物和小半灌木植物占优势的植物群落覆盖区域 | 沼泽湿地 | 80 | 指覆盖着水(淡水、半咸水或咸水)与草本或木本植物的广阔区域,是介于陆地和水体之间的过渡带 |
稀疏植被 | 29 | 分布在连续植物覆盖的植被以上至永久雪线之间的、由适应严寒生境的寒旱生或寒冷中旱生多年生轴根性杂类草或以垫状植物或地衣苔藓等构成的盖度在5%~40%的植被区域。如蚤缀、点地梅垫状植被分布区域 | 居民建设用地 | 35 | 指被建筑物覆盖的土地类型 |
半灌木或矮半灌木荒漠 | 662 | 半灌木、矮半灌木(驼绒藜、木亚菊、蒿)荒漠、垫状驼绒藜荒漠广泛分布区域 | 裸地 | 125 | 指裸地、沙地、岩石、盐碱地,植被覆盖度不超过10 % |
河流 | 38 | 指自然形成的沿着地表长条状槽形洼地 | 雪被与冰川 | 2703 | 指常年由积雪或者冰覆盖的土地类型 |
合计 | 6851 |
表3
羌塘高原地区不同土地覆被数据与样本点分类系统间的类别对应关系"
类型 | IGBP (IGBPDIS、MCD12Q1、UMD) | FAO LCCS (GLC 2000、GlobCover、CCI-LC) | GlobeLand 30 | ||
---|---|---|---|---|---|
序号 | 一级 | 二级 | |||
1 | 草地 | 草地 | 草原、草甸 | 草地 | |
2 | 高寒草甸 | - | 草甸 | - | |
3 | 高寒草原 | 草地 | 草原 | 草地 | |
4 | 稀疏植被 | 稀疏植被 | - | 自然植被与农田镶嵌类型、稀疏植被 | - |
5 | 半灌木或矮半灌木荒漠 | 半灌木或矮半灌木荒漠 | 稀疏灌木林地 | 荒漠草地、灌丛、落叶灌丛 | 灌木林地 |
6 | 水体 | 水体 | 水体 | 水体 | |
7 | 河流 | - | - | - | |
8 | 湖泊 | - | - | - | |
9 | 沼泽湿地 | 沼泽湿地 | 湿地 | 稀疏草本或木本湿地 | 湿地 |
10 | 居民建设用地 | 居民建设用地 | 建设用地 | 建设用地 | 人造地表 |
11 | 裸地 | 裸地 | 裸地 | 裸地、砾石裸地、松散裸地 | 裸地 |
12 | 雪被和冰川 | 雪被和冰川 | 雪被与冰川 | 永久雪被与冰川 | 永久雪被与冰川 |
13 | 无 | - | 常绿针叶林、常绿阔叶林、落叶针叶林、落叶阔叶林、混交林、郁闭灌木林地、森林稀疏草原、稀树草原、农田、农田与自然植被镶嵌类型 | 旱地、灌溉或季节性水淹农田、农田与自然植被镶嵌类型、常绿针叶林 | 农田、乔木林地 |
表4
七套数据产品中不同类型面积比例及总体精度(%)"
类型 | CCI-LC | GLC 2000 | GlobCover | GlobeLand30 | IGBPDIS | MCD12Q1 | UMD | |
---|---|---|---|---|---|---|---|---|
本文 研究区 | 稀疏植被 | 2.00 | 0.00 | 2.51 | 0.00 | 0.00 | 0.00 | 0.00 |
湿地 | 0.07 | 0.00 | 0.00 | 0.31 | 0.31 | 0.06 | 0.00 | |
建设用地 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
雪被与冰川 | 2.25 | 2.49 | 1.64 | 1.19 | 1.19 | 1.25 | 0.00 | |
草地 | 70.51 | 67.69 | 68.84 | 86.12 | 40.47 | 3.53 | 19.75 | |
高寒荒漠 | 1.10 | 16.62 | 0.00 | 2.34 | 2.34 | 9.49 | 68.50 | |
水体 | 4.00 | 2.77 | 4.07 | 4.40 | 4.40 | 3.32 | 4.09 | |
裸地 | 20.06 | 9.28 | 51.31 | 24.07 | 24.07 | 40.91 | 23.88 | |
一级类型 总体精度 | 53.92 | 49.97 | 31.88 | 55.09 | 11.76 | 24.61 | 5.98 | |
二级类型 总体精度 | 46.23 | 39.41 | 26.23 | 46.55 | 10.61 | 21.46 | 6.00 | |
等级 | Ⅰ | Ⅱ | Ⅲ | Ⅰ | Ⅳ | Ⅲ | Ⅳ | |
国际报道 | 总体精度 | 74.40 | 68.60 | 67.50 | 80.03 | 66.90 | 74.80 | 65.00 |
参考文献 | 文献[32] | 文献[26] | 文献[31] | 文献[33] | 文献[27] | 文献[29, 30] | 文献[28] |
表5
七套数据产品中不同类型面积估算精度(%)"
数据 | 稀疏植被 | 湿地 | 建设用地 | 雪被与冰川 | 草地 | 高寒荒漠 | 水体 | 裸地 |
---|---|---|---|---|---|---|---|---|
CCI-LC | 0.00 | 0.00 | 0.00 | 12.70 | 12.32 | 7.79 | 73.25 | 14.48 |
GlobalLand 30 | 0.00 | 8.75 | 26.83 | 25.24 | 4.41 | 0.00 | 57.96 | 34.43 |
GLC 2000 | 0.00 | 0.00 | 0.00 | 36.46 | 15.00 | 19.17 | 40.85 | 0.68 |
GlobCover | 0.00 | 0.00 | 0.00 | 42.87 | 1.74 | 0.00 | 87.48 | 21.40 |
MCD12Q1 | 0.00 | 64.17 | 0.00 | 55.69 | 1.18 | 3.55 | 81.24 | 37.59 |
IGBPDIS | 0.00 | 0.00 | 0.00 | 0.00 | 21.53 | 73.82 | 30.03 | 0.70 |
UMD | 0.00 | 0.00 | 0.00 | 0.00 | 4.88 | 42.86 | 42.54 | 9.90 |
[1] |
Sutherland W J, Adams W M, Aronson R B, et al.One hundred questions of importance to the conservation of global biological diversity. Conservation Biology, 2009, 23(3): 557-567.
doi: 10.1111/j.1523-1739.2009.01212.x pmid: 19438873 |
[2] |
Grekousis G, Mountrakis G, Kavouras M.An overview of 21 global and 43 regional land-cover mapping products. International Journal of Remote Sensing, 2015, 36(21): 5309-5335.
doi: 10.1080/01431161.2015.1093195 |
[3] |
Gong P, Wang J, Yu L, et al.Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.
doi: 10.1080/01431161.2012.748992 |
[4] |
Herold M, Mayaux P, Woodcock C E, et al.Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment, 2008, 112(5): 2538-2556.
doi: 10.1016/j.rse.2007.11.013 |
[5] |
Congalton R G, Gu J, Yadav K, et al.Global land cover mapping: A review and uncertainty analysis. Remote Sensing, 2014, 6(12): 12070-12093.
doi: 10.3390/rs61212070 |
[6] |
Tsendbazar N E, De Bruin S, Herold M.Assessing global land cover reference datasets for different user communities. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 93-114.
doi: 10.1016/j.isprsjprs.2014.02.008 |
[7] |
Foody G M.Status of land cover classification accuracy assessment. Remote sensing of environment, 2002, 80(1): 185-201.
doi: 10.1016/S0034-4257(01)00295-4 |
[8] |
Wulder M A, Coops N C.Make Earth observations open access. Nature, 2014, 513(7516): 30-31.
doi: 10.1038/513030a pmid: 25186885 |
[9] |
Moristette J T, Privette J L, Christopher O, et al.A framework for the validation of MODIS land cover products. Remote Sensing of Environment, 2002, 83(1/2): 77-96.
doi: 10.1016/S0034-4257(02)00088-3 |
[10] |
Mccallum I, Obersteiner M, Nilsson S, et al.A spatial comparison of four satellite derived 1km global land cover datasets. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(4): 246-255.
doi: 10.1016/j.jag.2005.12.002 |
[11] |
Fritz S, See L, Mccallum I, et al.Highlighting continued uncertainty in global land cover maps for the user community. Environmental Research Letters, 2011, 6(4): 44005.
doi: 10.1088/1748-9326/6/4/044005 |
[12] |
Kaptué Tchuenté A T, Roujean J, De Jong S M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(2): 207-219.
doi: 10.1016/j.jag.2010.11.005 |
[13] |
Schultz M, Tsendbazazr N E, Herold M, et al.Utilizing the Global Land Cover 2000 reference dataset for a comparative accuracy assessment of 1 km global land cover maps. Remote Sensing and Spatial Information Sciences, 2015, 40(7): 503-510.
doi: 10.5194/isprsarchives-XL-7-W3-503-2015 |
[14] |
Bai Y, Feng M, Jiang H, et al.Validation of land cover maps in China using a sampling-based labeling approach. Remote Sensing, 2015, 7(8): 10589-10606.
doi: 10.3390/rs70810589 |
[15] |
Lei G, Li A, Bian J, et al.Land cover mapping in Southwestern China using the HC-MMK approach. Remote Sensing, 2016, 8(4): 305.
doi: 10.3390/rs8040305 |
[16] |
Stehman S V.Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. International Journal of Remote Sensing, 2014, 35(13): 4923-4939.
doi: 10.1080/01431161.2014.930207 |
[17] |
Stehman S V.Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 2009, 30(20): 5243-5272.
doi: 10.1080/01431160903131000 |
[18] |
Wickham J, Stehman S V, Gass L, et al.Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sensing of Environment, 2017, 191: 328-341.
doi: 10.1016/j.rse.2016.12.026 |
[19] |
Nie Y, Sheng Y, Liu Q, et al.A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 2017, 189: 1-13.
doi: 10.1016/j.rse.2016.11.008 |
[20] |
Yao T, Thompson L, Yang W, et al.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[21] |
刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376.
doi: 10.3969/j.issn.1009-637X.2008.03.001 |
[Liu Jiyuan, Xu Xinliang, Shao Quanqin.The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters Region in Qinghai province. Acta Geographica Sinca, 2008, 63(4): 364-376.]
doi: 10.3969/j.issn.1009-637X.2008.03.001 |
|
[22] |
张镱锂, 刘林山, 摆万奇, 等. 黄河源地区草地退化空间特征. 地理学报, 2006, 61(1): 3-14.
doi: 10.3321/j.issn:0375-5444.2006.01.001 |
[Zhang Yili, Liu Linshan, Bai Wanqi et al. Grassland degradation in the Source Region of the Yellow River. Acta Geographica Sinca, 2006, 61(1): 3-14.]
doi: 10.3321/j.issn:0375-5444.2006.01.001 |
|
[23] | 祁威. 羌塘高原自然地理特征与寒旱核心区范围探讨. 北京: 中国科学院大学博士学位论文, 2015. |
[Qi Wei.Analyzing the physical geography characteristics of QiangtangPlateau and identifying the boundary of the cold and dry core region of Qiangtang Plateau. Beijing: Doctoral Dissertation of University of Chinese Academy of Sciences, 2015.] | |
[24] | 张镱锂, 王兆锋, 王秀红, 等. 青藏高原关键区域土地覆被变化及生态建设反思. 自然杂志, 2013, 35(3): 187-192. |
[Zhang Yili, Wang Zhaofeng, Wang Xiuhong, et al.Land cover changes in the key regions and self reflection on ecological construction of the Tibetan Plateau. Chinese Journal of Nature, 2013, 35(3): 187-192.] | |
[25] | Guo W Q, Xu J L, Liu S Y, et al.The second glacier inventory dataset of China (version 1.0). Cold and Arid Regions Science Data Center: Lanzhou, China, 2014. |
[26] |
Bartholomé E, Belward A S.GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 2005, 26(9): 1959-1977.
doi: 10.1080/01431160412331291297 |
[27] |
Loveland T R, Reed B C, Brown J F, et al.Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 2000, 21(6-7): 1303-1330.
doi: 10.1080/014311600210191 |
[28] |
Hansen M C, Defries R S, Townshend J R, et al.Global land cover classification at 1 km spatial resolution using a classification tree approach. International journal of remote sensing, 2000, 21(6-7): 1331-1364.
doi: 10.1080/014311600210209 |
[29] |
Friedl M A, Sulla-Menashe D, Tan B, et al.MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 2010, 114(1): 168-182.
doi: 10.1016/j.rse.2009.08.016 |
[30] | Friedl M, Sulla Menashe D.Note to users of MODIS Land Cover (MCD12Q1) Products Report. Washington District of Columbia:NASA, 2011. |
[31] | Bontemps S, Defourny P, Bogaert E V, et al.Globcover 2009-Products description and validation Report, Leuve: University of catholique de Louvain, 2011. |
[32] | Belgium U.Land Cover CCI Product User Guide Version 2. Leuve: University of catholique de Louvain, 2016. |
[33] |
Chen J, Chen J, Liao A, et al.Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
doi: 10.1016/j.isprsjprs.2014.09.002 |
[34] |
Giri C, Zhu Z, Reed B.A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote sensing of environment, 2005, 94(1): 123-132.
doi: 10.1016/j.rse.2004.09.005 |
[35] |
Ran Y, Li X, Lu L.Evaluation of four remote sensing based land cover products over China. International Journal of Remote Sensing, 2010, 31(2): 391-401.
doi: 10.1080/01431160902893451 |
[36] |
Giri C, Zhu Z, Reed B.A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sensing of Environment, 2005, 94(1): 123-132.
doi: 10.1016/j.rse.2004.09.005 |
[37] |
Ran Y, Li X, Lu L.Evaluation of four remote sensing based land cover products over China. International Journal of Remote Sensing, 2010, 31(2): 391-401.
doi: 10.1080/01431160902893451 |
[38] |
Olofsson P, Foody G M, Herold M, et al.Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 2014, 148: 42-57.
doi: 10.1016/j.rse.2014.02.015 |
[39] |
黄亚博, 廖顺宝. 首套全球30 m分辨率土地覆被产品区域尺度精度评价: 以河南省为例. 地理研究, 2016, 35(8): 1433-1446.
doi: 10.11821/dlyj201608003 |
[Huang Yabo, Liao Shunbao.Regional accuracy assessments of the first global land cover dataset at 30-meter resolution: A case study of Henan province. Geographical Research, 2016, 35(8): 1433-1446.]
doi: 10.11821/dlyj201608003 |
|
[40] | 郑度. 喀喇昆仑山—昆仑山地区自然地理. 北京: 科学出版社, 1999. |
[Zheng Du, Physical Geography of Karakorum-Kunlun Mountains. Beijing: Science Press, 1999.] | |
[41] | 中国科学院青藏高原综合科学考察队. 西藏植被. 北京: 科学出版社, 1988. |
[Changchun Institute of Geography, CAS. Tibet Vegetation. Beijing: Science Press, 1998.] | |
[42] |
Zhang G, Yao T, Piao S, et al.Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters, 2017, 44(1): 252-260.
doi: 10.1002/2016GL072033 |
[43] |
Zhang M, Ma M, De Maeyer P, et al.Uncertainties in classification system conversion and an analysis of inconsistencies in Global Land Cover Products. ISPRS International Journal of Geo-Information. 2017, 6(4): 112.
doi: 10.3390/ijgi6040112 |
[44] |
Oteros J, García-Mozo H, Vázquez L, et al.Modelling olive phenological response to weather and topography. Agriculture, Ecosystems & Environment, 2013, 179: 62-68.
doi: 10.1016/j.agee.2013.07.008 |
[45] |
Zhang G, Zhang Y, Dong J, et al.Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011, Proceedings of the National Academy of Sciences, 2013, 110(11): 4309-4314.
doi: 10.1073/pnas.1210423110 pmid: 23440201 |
[1] | 吴成永, 陈克龙, 曹广超, 段水强, 薛华菊, 鄂崇毅, 罗正霞. 近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析[J]. 地理研究, 2018, 37(4): 717-730. |
[2] | 覃郑婕,侯书贵,王叶堂,庞洪喜. 青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J]. 地理研究, 2017, 36(4): 743-754. |
[3] | 赵海卫,郭柯,乔鲜果,刘长成. 青藏高原垫状驼绒藜高寒荒漠的生态地理特征[J]. 地理研究, 2017, 36(12): 2441-2450. |
[4] | 李兰晖, 刘琼欢, 张镱锂, 刘林山, 丁明军, 谷昌军. 羌塘高原降水空间分布及其变化特征[J]. 地理研究, 2017, 36(11): 2047-2060. |
[5] | 祁威,张镱锂,刘林山,王兆锋,丁明军,赵志龙. 羌塘高原核心区2013-2014年土壤温度变化特征[J]. 地理研究, 2017, 36(11): 2075-2087. |
[6] | 王兆锋,张镱锂,刘林山,赵志龙,祁威. 羌塘高原高寒湖盆区土壤属性分异特征研究——以查日那足山麓至湖滨地区为例[J]. 地理研究, 2017, 36(11): 2088-2100. |
[7] | 李彩瑛,阎建忠,刘林山,李兰晖,张镱锂. 基于TVDI的羌塘高原夏季土壤湿度变化分析[J]. 地理研究, 2017, 36(11): 2101-2111. |
[8] | 谢芳荻,阎建忠,刘林山,张镱锂,王兆锋,李兰晖,李彩瑛. 青藏高原高寒荒漠区土壤湿度监测仪器的校正方法探讨[J]. 地理研究, 2017, 36(11): 2112-2128. |
[9] | 李兰晖, 刘林山, 张镱锂, 丁明军, 李士成, 陈倩. 青藏高原高寒草地物候沿海拔梯度变化的差异分析[J]. 地理研究, 2017, 36(1): 26-36. |
[10] | 黄亚博,廖顺宝. 首套全球30 m分辨率土地覆被产品区域尺度精度评价——以河南省为例[J]. 地理研究, 2016, 35(8): 1433-1446. |
[11] | 姚永慧, 张百平. 青藏高原气温空间分布规律及其生态意义[J]. 地理研究, 2015, 34(11): 2084-2094. |
[12] | 韩芳, 张百平, 谭靖, 周亮广, 李伟涛, 刘民士. 山体基面高度对青藏高原及其周边地区雪线空间分布的影响[J]. 地理研究, 2014, 33(1): 23-30. |
[13] | 张学儒, 张镱锂, 刘林山, 张继平. 基于SOFM神经网络模型的土地类型分区尝试——以青藏高原东部样带为例[J]. 地理研究, 2013, 32(5): 839-847. |
[14] | 刘宪锋, 任志远, 林志慧. 青藏高原生态系统固碳释氧价值动态测评[J]. 地理研究, 2013, 32(4): 663-670. |
[15] | 于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价[J]. 地理研究, 2011, 30(12): 2289-2295. |
|