地理研究 ›› 2017, Vol. 36 ›› Issue (11): 2129-2140.doi: 10.11821/dlyj201711008
收稿日期:
2017-05-20
修回日期:
2017-09-27
出版日期:
2017-11-20
发布日期:
2017-11-20
作者简介:
作者简介:李延森(1991- ),男,云南西双版纳人,硕士,研究方向为3S技术在资源环境中的应用。E-mail:
基金资助:
Yansen Li(), Jinxing Zhou, Xiuqin Wu(
)
Received:
2017-05-20
Revised:
2017-09-27
Online:
2017-11-20
Published:
2017-11-20
摘要:
青藏铁路穿越区生态脆弱,铁路修建会对沿线区域植被造成破坏。为客观评价铁路修建对沿线植被生态系统的影响,基于1995-2014年覆盖青藏铁路沿线10 km范围的212景Landsat TM/ETM+影像,利用Fmask算法结合STARFM模型去除云、阴影及条带,得到30 m NDVI数据,最后通过一元线性回归和序贯t检验,对10 km区域的NDVI时空演变、稳态转变以及各植被生态系统弹性特征进行分析。结果表明:① 20年间,青藏铁路沿线10 km范围内NDVI“稳中有升”,与青藏高原NDVI变化相符,空间上呈“南高北低”的分布特征;北部区域NDVI变化相对稳定,NDVI下降区域集中在那曲—当雄。② 将沿线10 km范围划分为7个缓冲区,发现铁路修建及附属设施占地对植被的破坏作用最明显,集中在青藏铁路两侧100 m内,并对青藏铁路沿线1 km范围内的植被生长有抑制作用,作用程度与铁路距离成反比。③ 城市及周边、河谷和牧区等人类活动较多的区域NDVI稳态转变最剧烈;各生态系统弹性大小依次为:裸地>荒漠>高山植被>草原>草甸>灌丛>湿地>农田。湿地是最易受外界干扰而改变的类型,是保护的重点类型,而荒漠和裸地生态系统弹性最高,最不易改变,也是生态恢复的难点。
李延森, 周金星, 吴秀芹. 青藏铁路(格拉段)修建对沿线植被生态系统及其弹性的影响[J]. 地理研究, 2017, 36(11): 2129-2140.
Yansen Li, Jinxing Zhou, Xiuqin Wu. Effects of the construction of Qinghai-Tibet railway on the vegetation ecosystem and eco-resilience[J]. GEOGRAPHICAL RESEARCH, 2017, 36(11): 2129-2140.
表1
数据汇总"
数据类型 | 数据参数和说明 | 获取时间 | 数据内容 | 分辨率 | 获取方式 | |
---|---|---|---|---|---|---|
数据来源 | 条带号 | |||||
影像 | Landsat TM/ETM+ | p136r035、p137r035、p137r036、p137r037、p137r038、p137r039、p138r036、p138r037、p138r038、p138r039 | 1995-2014年 7月下旬-9月上旬 | 当年云覆盖最少 的一期影像 | 30 m | http://glovis.usgs.gov |
MODIS MOD09 A1 | h25v05、h25v06 | 2000-2014年8月 | 无云影像 | 250 m | https://ladsweb. nasa.gov.com | |
铁路路线 | 矢量路线数据 | 2015年12月 | 格拉段铁路路线 | 矢量化 | ||
植被类型 | 中国植被类型数据 | 2001年 | 植被类型分布 | http://westdc.westgis.ac.cn |
表3
1995-2014年研究区NDVI变化类型占比(%)"
退化类型 | 变化范围 | 0~100 m | 100~250 m | 250~500 m | 500~1000 m | 1000~2000 m | 2000~5000 m | 5000~10000 m | 全区占比 |
---|---|---|---|---|---|---|---|---|---|
显著退化 | <~0.008 | 10.11 | 2.78 | 2.86 | 2.21 | 1.79 | 2.06 | 2.34 | 2.26 |
轻度退化 | -0.008~-0.002 | 22.70 | 12.11 | 11.73 | 11.52 | 10.41 | 9.30 | 8.40 | 9.49 |
保持稳定 | -0.002~0.002 | 46.77 | 51.86 | 51.83 | 51.81 | 52.54 | 52.64 | 52.95 | 52.62 |
轻度增加 | 0.002~0.008 | 17.72 | 28.46 | 28.87 | 30.21 | 30.47 | 30.06 | 29.71 | 29.8 |
显著增加 | >0.008 | 2.70 | 4.80 | 4.71 | 4.25 | 4.79 | 5.93 | 6.60 | 5.83 |
[1] | 王群, 陆林, 杨兴柱. 国外旅游地社会—生态系统恢复力研究进展与启示. 自然资源学报, 2014, 29(5): 894-908. |
[Wang Qun, Lu Lin, Yang Xingzhu.Research progress and enlightenment of tourism socio-ecological system resiliencein foreign countries. Journal of Natural Resources, 2014, 29(5): 894-908.] | |
[2] | 王俊, 孙晶, 杨新军, 等. 基于NDVI的社会—生态系统多尺度干扰分析: 以甘肃省榆中县为例. 生态学报, 2009, 29(3): 1622-1628. |
[Wang Jun, Sun Jing, Yang Xinjun, et al.An analysis of disturbance on social-ecological system at multiple scales based on NDVI, case study in Yuzhong county of Gansu province. Acta Ecologica Sinica, 2009, 29(3): 1622-1628.] | |
[3] | Holling C S.Resilience and stability of ecological systems. Annual Review of Ecology & Systematics, 1973, 4(2): 1-23. |
[4] |
Holling C S.Understanding the complexity of economic, ecological, and social systems. Ecosystems, 2001, 4(5): 390-405.
doi: 10.1007/s10021-001-0101-5 |
[5] |
Pimm S L.The complexity and stability of ecosystems. Nature, 1984, 307(5949): 321-326.
doi: 10.1038/307321a0 |
[6] | Hodgson D, Mcdonald J L, Hosken D J.What do you mean, 'resilient'?. Trends in Ecology & Evolution, 2015, 30(9): 503-506. |
[7] |
Standish R J, Hobbs R J, Mayfield M M, et al.Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177(9): 43-51.
doi: 10.1016/j.biocon.2014.06.008 |
[8] |
Walker B, Holling C S, Carpenter S R, et al.Resilience, adaptability and transformability in social-ecological systems. Ecology & Society, 2004, 9(2): 3438-3447.
doi: 10.1890/04-0463 |
[9] |
Scheffer M, Carpenter S, Foley J A, et al.Catastrophic shifts in ecosystems. Nature, 2001, 413(6856): 591-596.
doi: 10.1038/35098000 |
[10] |
Hirota M, Holmgren M, Van Nes E H, et al. Global resilience of tropical forest and savanna to critical transitions. Science, 2011, 334(6053): 232-235.
doi: 10.1126/science.1210657 pmid: 21998390 |
[11] |
Folke C, Carpenter S, Walker B, et al.Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 2004, 35(1): 557-581.
doi: 10.1146/annurev.ecolsys.35.021103.105711 |
[12] |
Nash K L, Graham N A J, Jennings S, et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology, 2016, 53(3): 646-655.
doi: 10.1111/1365-2664.12430 |
[13] |
Dakos V, Carpenter S R, Van Nes E H, et al. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 370(1659): 20130263-20130263.
doi: 10.1098/rstb.2013.0263 pmid: 4247400 |
[14] |
Walker B, Carpenter S R, Anderies J M, et al.Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Ecology & Society, 2002, 6(1): 840-842.
doi: 10.1046/j.1523-1739.2002.01212.x |
[15] |
Eason T, Garmestani A S, Stow C A, et al.Managing for resilience: An information theory-based approach to assessing ecosystems. Journal of Applied Ecology, 2016, 53(3): 656-665.
doi: 10.1111/1365-2664.12597 |
[16] | 西藏自治区铁路建设运营工作领导小组办公室西藏自治区发展和改革委员会. 十年同心同行共铸高原天路——青藏铁路运营十年助推西藏经济社会发展情况报告. 中国铁路, 2016, (5): 8-11. |
[Tibet Autonomous Region Railway Construction and Operation Leading Group Office Tibet Autonomous Region Development and Reform Commission. Qinghai-Tibet railway operation ten years to boost Tibet's economic and social development report. China Railway, 2016, (5): 8-11.] | |
[17] | 费杜秋, 刘峰贵, 周强, 等. 青藏铁路沿线滑坡泥石流灾害风险分析. 干旱区地理, 2016, 39(2): 345-352. |
[Fei Duqiu, Liu Fenggui, Zhou Qiang, et al.Risk analysis of landslide and debris flow disasters along the Qinghai-Tibet Railway. Arid Land Geography, 2016, 39(2): 345-352.] | |
[18] |
Cheng J J, Xue C X.The sand-damage-prevention engineering system for the railway in the desert region of the Qinghai-Tibet plateau. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 125: 30-37.
doi: 10.1016/j.jweia.2013.11.016 |
[19] | 诸葛海锦, 林丹琪, 李晓文. 青藏高原高寒荒漠区藏羚生态廊道识别及其保护状况评估. 应用生态学报, 2015, 26(8): 2504-2510. |
[Zhuge Haijin, Lin Danqi, Li Xiaowen.Identification of ecological corridors for Tibetan antelope and assessment of their human disturbances in the alpine desert of Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 2015, 26(8): 2504-2510.] | |
[20] |
王亚茹, 赵雪雁, 张钦, 等. 高寒生态脆弱区农户的气候变化适应策略: 以甘南高原为例. 地理研究, 2016, 35(7): 1273-1287.
doi: 10.5846/stxb201601210146 |
[Wang Yaru, Zhao Xueyan, Zhang Qin, et al.Farmers' climate change adaptation strategies in an ecologically vulnerable alpine region: A case of Gannan Plateau. Geographical Research, 2016, 35(7): 1273-1287.]
doi: 10.5846/stxb201601210146 |
|
[21] |
Lin Z, Luo J, Niu F.Development of a thermokarst lake and its thermal effects on permafrost over nearly 10 yr in the Beiluhe Basin, Qinghai-Tibet Plateau. Geosphere, 2016, 12(2): 632-643.
doi: 10.1130/GES01194.1 |
[22] |
Wang G, Gillespie A R, Liang S, et al.Effect of the Qinghai-Tibet Railway on vegetation abundance. International Journal of Remote Sensing, 2015, 36(19-20): 5222-5238.
doi: 10.1080/01431161.2015.1041179 |
[23] |
罗久富, 郑景明, 周金星, 等. 青藏高原高寒草甸区铁路工程迹地植被恢复过程的种间关联性. 生态学报, 2016, 36(20): 6528-6537.
doi: 10.5846/stxb201502030276 |
[Luo Jiufu, Zheng JingMing, Zhou Jinxing, et al. Analysis of the interspecific associations present in an alpine meadow community undergoing revegetation on the railway-construction affected land of the Qinghai-Tibet Plateau, Acta Ecologica Sinica, 2016, 36(20): 6528-6537.]
doi: 10.5846/stxb201502030276 |
|
[24] | 高江波, 赵志强, 李双成. 基于地理信息系统的青藏铁路穿越区生态系统恢复力评价. 应用生态学报, 2008, 19(11): 2473-2479. |
[Gao Jiangbo, Zhao Zhiqiang, Li Shuangcheng, Evaluation of ecosystem resilience in the regions across Qinghai-Tibet railway based on GIS. Chinese Journal of Applied Ecology, 2008, 19(11): 2473-2479.] | |
[25] | 苟亚青, 刘昕, 李思远, 等. 基于3S技术的青藏公路改建工程环境影响评价方法. 中国环境科学, 2012, 32(10): 1914-1920. |
[Gou Yaqing, Liu Xin, Li Siyuan, et al.Application of 3S technologies in Qinghai-Tibetan highway environmental impact assessment. China Environmental Science, 2012, 32(10): 1914-1920.] | |
[26] | 江泽慧, 彭镇华. 青藏铁路沿线植被生态恢复. 北京: 中国林业出版社, 2014. |
[Jiang Zehui, Peng Zhenhua.Vegetation Ecological Restoration along Qinghai-Tibet Railway. Beijing: China Forestry Press, 2014.] | |
[27] |
陈阳, 范建容, 文学虎, 等. 基于时空数据融合模型的TM影像云去除方法研究. 遥感技术与应用, 2015, 30(2): 312-320.
doi: 10.11873/j.issn.1004-0323.2015.2.0312 |
[Chen Yang, Fan Jianrong, Wen Xuehu, et al.Research on cloud removal from Landsat TM Image based on spatial and temporal data fusion model. Remote Sensing Technology and Application, 2015, 30(2): 312-320.]
doi: 10.11873/j.issn.1004-0323.2015.2.0312 |
|
[28] |
Zhu Z, Woodcock C E.Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 2012, 118(6): 83-94.
doi: 10.1016/j.rse.2011.10.028 |
[29] |
Gao F, Masek J, Schwaller M, et al.On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218.
doi: 10.1109/TGRS.2006.872081 |
[30] |
陈辉, 李双成, 郑度. 青藏公路铁路沿线生态系统特征及道路修建对其影响. 山地学报, 2003, 21(5): 559-567.
doi: 10.3969/j.issn.1008-2786.2003.05.007 |
[Chen Hui, Li Shuangcheng, Zheng Du.Supported by the National key project for basic research on Tibetan Plateau and the assessment of environmental ecological effects of Qinghai-Xizang Railway. Journal of Mountain Science, 2003, 21(5): 559-567.]
doi: 10.3969/j.issn.1008-2786.2003.05.007 |
|
[31] | 赵安周, 刘宪锋, 朱秀芳, 等, 2000-2014年黄土高原植被覆盖时空变化特征及其归因. 中国环境科学, 2016, 36(5): 1568-1578. |
[Zhan Anzhou, Liu Xianfeng, Zhu Xiufang, et al.Spatio-temporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau. China Environmental Science, 2016, 36(5): 1568-1578.] | |
[32] |
Li B, Zhang L, Yan Q, et al.Application of piecewise linear regression in the detection of vegetation greenness trends on the Tibetan Plateau. International Journal of Remote Sensing, 2014, 35(4): 1526-1539.
doi: 10.1080/01431161.2013.878066 |
[33] | 梅雪英, 杨扬, 方建德. 上海地区酸雨类型格局转变研究. 长江流域资源与环境, 2010, 19(9): 1075-1079. |
[Mei Xueying, Yang Yang, Fang Jiande.Regime shift of acid rain type in area of Shanghai. Resources and Environment in the Yangtze Basin, 2010, 19(9): 1075-1079.] | |
[34] |
Rodionov S, Overland J.Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science, 2005, 62(3): 328-332.
doi: 10.1016/j.icesjms.2005.01.013 |
[35] |
周金星, 易作明, 李冬雪, 等. 青藏铁路沿线原生植被多样性分布格局研究. 水土保持学报, 2007, 21(3): 173-177.
doi: 10.3321/j.issn:1009-2242.2007.03.039 |
[Zhou Jinxing, Yi Zuoming, Li Dongxue, et al.Distribution Patterns of Species Diversity of Natural Vegetation Along Qinghai-Tibetan Railway. Journal of Soil and Water Conservation, 2007, 21(3): 173-177.]
doi: 10.3321/j.issn:1009-2242.2007.03.039 |
|
[36] | Shen W S, Ji D, Zhang H, et al.The response relation between climate change and NDVI over the Qinghai-Tibet plateau. Journal of the World Academy of Science, Engineering and Technology, 2011, 59: 2216-2222. |
[37] |
丁明军, 沈振西, 张镱锂, 等. 青藏公路与铁路沿途1981-2001年植被覆盖变化. 资源科学, 2005, 27(5): 128-133.
doi: 10.3321/j.issn:1007-7588.2005.05.020 |
[Ding Mingjun, Shen Zhenxi, Zhang Yili, et al.Vegetation change along the Qinghai-Xizang highway and railway from 1981 to 2001. Resources Science, 2005, 27(5): 128-133.]
doi: 10.3321/j.issn:1007-7588.2005.05.020 |
|
[38] |
宋怡, 金龙, 陈建兵. 青藏公路工程活动对沿线植被覆盖的影响. 冰川冻土, 2014, 36(4): 1017-1025.
doi: 10.7522/j.issn.1000-0240.2014.0123 |
[Song Yi, Jin Long, Chen Jianbing.Study of the vegetation change due to the reinforcement and rebuilding along the Qinghai-Tibet Highway. Journal of Glaciology and Geocryology, 2014, 36(4): 1017-1025.]
doi: 10.7522/j.issn.1000-0240.2014.0123 |
|
[39] |
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展. 科学通报, 2015, 60(32): 3036-3047.
doi: 10.1360/n972014-01296 |
[Zhang Renhe, Su Fengge, Jiang Zhihong, et al.An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century (in Chinese). Chinese Science Bulletin, 2015, 60(32): 3036-3047.]
doi: 10.1360/n972014-01296 |
|
[40] | 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. |
[Zhang Xianzhou, Yang Yongping, Piao Shilong, et al.Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056.] | |
[41] |
崔庆虎, 蒋志刚, 刘季科, 等. 青藏高原草地退化原因述评. 草业科学, 2007, 24(5): 20-26.
doi: 10.3969/j.issn.1001-0629.2007.05.004 |
[Cui Qinghu, Jiang Zhigang, Liu Jike, et al.A review of the cause of rangeland degradation on Qinghai-Tibet Plateau. Pratacultural Science, 2007, 24(5): 20-26.]
doi: 10.3969/j.issn.1001-0629.2007.05.004 |
|
[42] |
陈爱东, 代卫川. 经济学视角下西藏草地退化的成因探讨. 经济与管理, 2011, 25(5): 84-89.
doi: 10.3969/j.issn.1003-3890.2011.05.017 |
[Chen Aidong, Dai Weichuan, On the causes of Tibetan grassland degradation in the economics perspective. Economy and Management, 2011, 25(5): 84-89.]
doi: 10.3969/j.issn.1003-3890.2011.05.017 |
|
[43] |
于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价. 地理研究, 2011, 30(12): 2289-2295.
doi: 10.11821/yj2011120016 |
[Yu Bohua, Lu Changhe.Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 2011, 30(12): 2289-2295.]
doi: 10.11821/yj2011120016 |
|
[44] |
高江波, 侯文娟, 赵东升, 等. 基于遥感数据的西藏高原自然生态系统脆弱性评估. 地理科学, 2016, 36(4): 580-587.
doi: 10.13249/j.cnki.sgs.2016.04.012 |
[Gao Jiangbo, Hou Wenjuan, Zhao Dongsheng, et al.Comprehensive assessment of natural ecosystem vulnerability in Tibetan Plateau based on satellite-derived datasets. Scientia Geographica Sinica, 2016, 36(4): 580-587.]
doi: 10.13249/j.cnki.sgs.2016.04.012 |
|
[45] | 沈渭寿, 张慧, 邹长新, 等. 青藏铁路建设对沿线高寒生态系统的影响及恢复预测方法研究. 科学通报, 2004, 49(9): 909-914. |
[Shen Weishou, Zhang Hui, Zou Changxin, et al.The influence of railway construction on the alpine ecosystem and recovery prediction method. Chinese Science Bulletin, 2004, 49(9): 909-914.] | |
[46] |
姚永慧, 张百平. 青藏高原气温空间分布规律及其生态意义. 地理研究, 2015, 34(11): 2084-2094.
doi: 10.11821/dlyj201511007 |
[Yao Yonghui, Zhang Baiping.The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Tibetan Plateau. Geographical Research, 2015, 34(11): 2084-2094.]
doi: 10.11821/dlyj201511007 |
[1] | 马超, 崔培培, 钟广睿, 孟梦, 杨城, 马雯思. 气候变化和工程活动对青藏铁路沿线植被指数时空变化的影响[J]. 地理研究, 2021, 40(1): 35-51. |
[2] | 付阳, 陈辉, 张斯琦, 杨祎, 赵元杰. 基于群落类型的寒区旱区物候特征及其对气候因子的响应——以2000—2019年柴达木盆地为例[J]. 地理研究, 2021, 40(1): 52-66. |
[3] | 孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200-1214. |
[4] | 刘怡媛, 李鹏, 肖池伟, 刘影, 饶滴滴. 老挝VIIRS活跃火的主要自然地理要素特征[J]. 地理研究, 2020, 39(3): 749-760. |
[5] | 毛明策, 蔡新玲, 高茂盛. 基于植被分区的秦岭年降水分区验证及其年际变化[J]. 地理研究, 2020, 39(12): 2833-2841. |
[6] | 林依雪, 李艳忠, 余文君, 卜添荟, 黄蓉. 植被恢复工程对黄河中游12个典型流域水热平衡的影响研究[J]. 地理研究, 2020, 39(11): 2593-2606. |
[7] | 谢舒笛, 莫兴国, 胡实, 陈学娟. 三北防护林工程区植被绿度对温度和降水的响应[J]. 地理研究, 2020, 39(1): 152-165. |
[8] | 牛莉芹, 程占红. 基于旅游开发影响的五台山植被景观特征分析[J]. 地理研究, 2019, 38(5): 1162-1174. |
[9] | 郭仲伟, 吴朝阳, 汪箫悦. 基于卫星遥感数据的森林病虫害监测与评价[J]. 地理研究, 2019, 38(4): 831-843. |
[10] | 刘梁美子, 占车生, 胡实, 董宇轩. 黔桂喀斯特山区植被变化及其地形效应[J]. 地理研究, 2018, 37(12): 2433-2446. |
[11] | 马超, 刘玮玮, 赵鹏飞, 马雯思, 马威. 1962-2016年达里诺尔流域水、草退化及气候响应[J]. 地理研究, 2017, 36(9): 1755-1772. |
[12] | 安雪丽, 武建军, 周洪奎, 李小涵, 刘雷震, 杨建华. 土壤相对湿度在东北地区农业干旱监测中的适用性分析[J]. 地理研究, 2017, 36(5): 837-849. |
[13] | 张静静, 郑辉, 朱连奇, 崔耀平, 张晓东, 叶露培. 豫西山地植被NDVI及其气候响应的多维变化[J]. 地理研究, 2017, 36(4): 765-778. |
[14] | 李彩瑛, 阎建忠, 刘林山, 李兰晖, 张镱锂. 基于TVDI的羌塘高原夏季土壤湿度变化分析[J]. 地理研究, 2017, 36(11): 2101-2111. |
[15] | 李焱沐, 王绍强, 钱钊晖, 陈蝶聪, 张雷明, 周国逸, 闫俊华, 孟泽. 亚热带针阔混交林光化学植被指数与光能利用效率关系研究[J]. 地理研究, 2017, 36(11): 2239-2250. |
|