Please wait a minute...
 首页  期刊介绍 期刊订阅 广告合作 联系我们 English
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
地理研究    2018, Vol. 37 Issue (3): 635-646     DOI: 10.11821/dlyj201803014
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
土壤制图中多目标属性的环境因子及其尺度选择——以黑龙江鹤山农场为例
史静静1,2(),杨琳1,3(),曾灿英4,朱阿兴1,4,5,6,秦承志1,2,梁朋1,2
1. 中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京 100101
2. 中国科学院大学,北京 100049
3. 南京大学地理与海洋科学学院,南京 210023
4. 南京师范大学地理科学学院,南京 210023
5. 南京师范大学虚拟地理环境教育部重点实验室,江苏省地理环境演化国家重点实验室培育建设点,江苏省地理信息资源开发与利用协同创新中心,南京 210023
6. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
Selection of environmental variables and their scales in multiple soil properties mapping: A case study in Heilongjiang Heshan Farm
SHI Jingjing1,2(),YANG Lin1,3(),ZENG Canying4,ZHU Axing1,4,5,6,QIN Chengzhi1,2,LIANG Peng1,2
1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
4. School of Geography, Nanjing Normal University, Nanjing 210023, China
5. Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education; State Key Laboratory Cultivation Base of Geographical Environment Evolution, Jiangsu Province; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
6. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
全文: PDF (1132 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

研究影响不同土壤属性空间分布的协同环境因子及其作用尺度,对于理解不同土壤属性的成土发展、土壤推测制图及针对多种土壤属性的空间采样设计具有重要意义。针对多种土壤属性,探索不同土壤属性的重要相关环境因子及其作用尺度,并就不同环境因子及其尺度的不同对土壤属性推测制图的影响展开研究。以黑龙江省鹤山农场为研究区,以表层砂粒、粉粒、黏粒、有机质含量和土壤厚度5种土壤属性为研究对象,根据计算邻域窗口大小的不同,生成173个不同尺度的地形因子,对单尺度地形因子和多尺度地形因子进行重要性排序,并根据重要性排序构建单尺度环境因子集1和多尺度环境因子集2,和基于专家知识选出的基准环境因子集3进行制图精度的对比。结果表明:当单尺度地形因子进行重要性排序选择时,所选出的5种土壤属性的重要相关环境因子与基准环境因子集3明显不同。当多尺度环境因子参与时,尽管对各土壤属性的作用尺度不同,各土壤属性排名靠前的因子绝大多数是基准环境因子。砂粒和粉粒的重要相关因子及作用尺度相当,但与黏粒的重要相关因子和作用尺度差别很大,有机质和土壤厚度的重要相关因子十分相似。环境因子集2较基准环境因子集3的制图精度显著提高,RMSE均值提高百分比为7.8%~21.3%,较环境因子集1的制图RMSE均值提高百分比为8.7%~16.5%。因此,针对不同的土壤属性进行制图或采样设计时,需充分考虑其环境因子和作用尺度的不同,针对基准环境因子选择适宜的尺度较选择不同的相关环境因子更重要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史静静
杨琳
曾灿英
朱阿兴
秦承志
梁朋
关键词 土壤属性制图环境因子随机森林多尺度 
Abstract

Studying the relevant environmental variables with consideration of scales for different soil properties is meaningful to understand the generation and development of soil properties, and also necessary in multiple soil properties mapping and sampling. This study explored multiple soil properties' relevant environmental variables and their scales, and examined the impact of different environmental variables and their scales on the prediction of different soil properties. Our study area is Heshan Farm, and the target soil properties are topsoil clay content, sand content, silt content, topsoil organic matter content (SOM), and soil depth. One hundred and seventy-three multi-scale terrain variables were generated by changing neighborhood size for calculation. The single scale and multi-scale variables were ranked according to their variable importance calculated by Random Forest. Subsets 1 and 2 were selected from single scale and multi-scale variables respectively based on their variable importance with elimination of multi-collinearity. Subset 3 was taken as a reference subset and selected based on the expert knowledge. The selected subset 1 had little common with subset 3. This indicates that the environmental variables selected based on expert knowledge may be not the most important variables for the soil properties. Subset 2 had a high overlap with subset 3 though the scales were different for different environmental variables and soil properties. For the case of soil sand and silt, their relevant variables and scales were similar but quite different from soil clay's, and the SOM and soil depth had similar relevant variables. The mapping results based on the three subsets showed that using environmental variables in subset 1 was more accurate than using environmental variables in subset 3 for all soil properties except for sand content, the improvements of mean RMSEs were 1.8%~13.1%. Using environmental variables in subset 2 was more accurate than using environmental variables in subsets 1 and 3 for all the five soil properties, the improvements of mean RMSEs were 8.7%~16.5% and 7.8%~21.3%. It was shown that using reference variables with proper scales is more important than using top-ranked single scale variables for mapping.

Key wordssoil property mapping    environmental variables    random forest    multi-scale
收稿日期: 2017-09-26      出版日期: 2018-04-25
基金资助:国家自然科学基金项目(41471178,41530749,41431177);中国科学院特色研究所培育建设服务项目(TSYJS03)
引用本文:   
史静静, 杨琳, 曾灿英等 . 土壤制图中多目标属性的环境因子及其尺度选择——以黑龙江鹤山农场为例[J]. 地理研究, 2018, 37(3): 635-646.
SHI Jingjing, YANG Lin, ZENG Canying et al . Selection of environmental variables and their scales in multiple soil properties mapping: A case study in Heilongjiang Heshan Farm[J]. GEOGRAPHICAL RESEARCH, 2018, 37(3): 635-646.
链接本文:  
http://www.dlyj.ac.cn/CN/10.11821/dlyj201803014      或      http://www.dlyj.ac.cn/CN/Y2018/V37/I3/635
Fig.1  研究区及样点分布图
砂粒(g/kg) 粉粒(g/kg) 黏粒(g/kg) 有机质(g/kg) 厚度(cm)
最小值 33.95 277.23 0.00 22.45 15.00
25%分位数 134.82 630.16 0.84 35.98 65.75
中位数 198.94 747.90 54.63 41.83 92.50
均值 233.61 714.34 52.05 43.38 92.82
75%分位数 288.26 822.27 94.67 47.72 125.00
最大值 663.18 965.55 194.43 91.80 170.00
Tab.1  样点属性值统计描述
环境因子 英文代称 软件 分析尺度
高程 Elevation - 10 m
地形湿度指数 TWI SoLIM n/a
地形特征指数[24] TCI SimDTA n/a
坡位[25] Slopepos SimDTA n/a
距最近排水的高差[26] Hand Python n/a
坡度 Slope SoLIM 30~490 m
坡向(cosine) Cosasp SoLIM 30~490 m
平面曲率 Planc SoLIM 30~490 m
剖面曲率 Profic SoLIM 30~490 m
地形粗糙指数[27] TRI SimDTA 30~490 m
地形部位指数[28,29] TPI SimDTA 30~490 m
地形起伏度[30] Relief SimDTA 30~490 m
Tab.2  环境因子数据
砂粒 粉粒 黏粒 有机质 厚度
环境因子集1 环境因子集2 环境因子集1 环境因子集2 环境因子集1 环境因子集2 环境因子集1 环境因子集2 环境因子集1 环境因子集2 基准环境因子集
Slopepos Slope31 TPI3 Planc39 Elevation Elevation Elevation Profic31 TRI3 Slope11 Planc3
Ref3 Planc39 Slopepos Slope45 Slope3 Planc45 Hand Elevation Elevation Cosasp43 Profic3
TPI3 Cosasp41 Elevation Profic11 Planc3 Profic25 TRI3 Planc11 Hand Elevation Slope3
Hand TWI Hand Cosasp43 Hand Slope15 Slopepos TPI17 Cosasp3 Planc19 TWI
Tab.3  每种土壤属性所选择的环境因子集1、环境因子集2和基准环境因子集3
Fig. 2  12个环境因子的变量重要性图
Fig. 3  环境因子集2中多尺度环境因子随尺度变化时的变量重要性图
RMSE 砂粒 粉粒 黏粒 有机质 厚度
subset1_3 -2.3* 1.8* 5.8* 6.5* 13.1*
subset2_3 7.8* 11.1* 21.3* 17.7* 20.6*
subset2_1 9.9* 9.4* 16.5* 12.1* 8.7*
Tab.4  环境因子集1和2较基准因子集3和环境因子集2较环境因子集1的RMSE均值提高百分比(%)
Fig. 4  土壤属性制图结果
Fig. 5  三个环境因子集的RMSE分布箱线图
[1] McBratney A B, Odeh I O A, Bishop T F A, et al. An overview of pedometric techniques for use in soil survey. Geoderma, 2000, 97: 293-327.http://linkinghub.elsevier.com/retrieve/pii/S0016706100000434
[2] McBratney A B, Mendonca Santos M L, Minasny B. On digital soil mapping. Geoderma, 2003, 117: 3-52.http://linkinghub.elsevier.com/retrieve/pii/S0016706103002234
[3] Miller B A, Koszinski S, Hierold W, et al.Towards mapping soil carbon landscapes: Issues of sampling scale and transferability. Soil Tillage Res, 2015, 156: 194-208.http://www.sciencedirect.com/science/article/pii/S016719871500152X
[4] 李润奎, 彭明, 河野泰之, . 基于分层策略和模糊推理的北方石质山区土壤厚度制图: 以滦平县虎什哈流域为例. 地理研究, 2013, 32(5): 965-973.http://d.wanfangdata.com.cn/Periodical/dlyj201305017 [Li Runkui, Peng Ming, Yasuyuki Kono, et al.Soil depth mapping in lithoidal mountainous area using stratified strategy and fuzzy logic: A case study in Hushiha watershed, North China. Geographical Research, 2013, 32(5): 965-973.]
[5] 陈实, 高超, 徐斌, . 新疆石河子农区土壤含盐量定量反演及其空间格局分析. 地理研究, 2014, 33(11): 2135-2144.
[Chen Shi, Gao Chao, Xu Bin, et al.Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang. Geographical Research, 2014, 33(11): 2135-2144.]
[6] Odeha I O A, McBratney A B, Chittleborough D J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma, 1994, 63(3-4): 197-214.http://linkinghub.elsevier.com/retrieve/pii/0016706194900639
[7] Zhu A X, Qi F, Moore A, et al.Prediction of soil properties using fuzzy membership values. Geoderma, 2010b, 158: 199-206.http://linkinghub.elsevier.com/retrieve/pii/S0016706110001497
[8] 杨琳, 朱阿兴, 秦承志, . 基于典型点的目的性采样设计方法及其在土壤制图中的应用. 地理科学进展, 2010, 29(3): 279-286.http://www.cqvip.com/Main/Detail.aspx?id=33377873 [Yang Lin, Zhu Axing, Qin Chengzhi, et al.A purposive sampling design method based on typical points and its application in soil mapping. Progress in Geography, 2010, 29(3): 279-286.]
[9] Priori S, Fantappiè M, Bianconi N, et al.Field-scale mapping of soil carbon stock with limited sampling by coupling Gamma-Ray and Vis-NIR Spectroscopy. Soil Science Society of America, 2016, 80: 954-964.https://dl.sciencesocieties.org/publications/sssaj/abstracts/80/4/954
[10] Miller B A, Koszinski S, Wehrhan M, et al. Impact of multi-scale predictor selection for modeling soil properties. Geoderma, 2015, 239-240: 97-106.http://linkinghub.elsevier.com/retrieve/pii/S0016706114003504
[11] McKenzie N J, Ryan P J. Spatial prediction of soil properties using environmental correlation. Geoderma, 1999, 89: 67-94.http://linkinghub.elsevier.com/retrieve/pii/S0016706198001372
[12] Ge Y, Wang J H, Heuvelink G B M, et al. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River Basin, China. International Journal of Geographical Information Science, 2015, 29(1): 92-110.http://www.tandfonline.com/doi/abs/10.1080/13658816.2014.948446
[13] Behrens T, Schmidt K, Ramirez-Lopez L, et al.Hyper-scale digital soil mapping and soil formation analysis. Geoderma, 2014, 213: 578-588.http://linkinghub.elsevier.com/retrieve/pii/S0016706113002759
[14] Smith M P, Zhu A X, Burt J E, et al.The effects of DEM resolution and neighborhood size on digital soil survey. Geoderma, 2006, 137: 58-69.http://linkinghub.elsevier.com/retrieve/pii/S001670610600231X
[15] Behrens T, Zhu A X, Schmidt K, et al.Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 2010, 155: 175-185.http://linkinghub.elsevier.com/retrieve/pii/S0016706109002298
[16] Roecker S M, Thompson J A.Scale effects on terrain attribute calculation and their use as environmental covariates for digital soil mapping. In: Boettinger J L, Howell D W, Moore A C, et al. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation, 2010: 55-66.http://link.springer.com/10.1007/978-90-481-8863-5_5
[17] Maynard J J, Johnson M G. Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent. Geoderma, 2014, 230-231: 29-40.http://www.sciencedirect.com/science/article/pii/S0016706114001335
[18] 呼雪梅, 秦承志. 数字地形分析中适宜分析窗口选择方法的评价. 武汉大学学报: 自然科学版, 2017, 42(10): 1365-1372.
[Hu Xuemei, Qin Chengzhi.Analysis on the approach to determine an appropriate window size for grid-based digital terrain. Journal of Wuhan University: Natural Science Edition, 2017, 42(10): 1365-1372.]
[19] Zhu A X, Yang L, Li B L, et al.Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma, 2010, 155(3/4): 166-174.http://www.cabdirect.org/abstracts/20103238810.html;jsessionid=7DA9DE4B83BBCFFA150C44D1B93936F2;jsessionid=0C5D7305F90BDDF6658B50D687DB7601
[20] Yang L, Zhu A X, Qi F, et al.An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping. International Journal of Geographical Information Science, 2013, 27(1): 1-23.http://www.tandfonline.com/doi/abs/10.1080/13658816.2012.658053
[21] Nelson D W, Sommers L E.Total carbon, organic carbon, and organic matter. In: Page A L. Methods of Soil Analysis II. American Society of Agronomy, Madison, 1982: 539-579.
[22] 秦承志, 卢岩君, 包黎莉, . 简化数字地形分析软件(SimDTA)及其应用: 以嫩江流域鹤山农场区的坡位模糊分类为例. 地球信息科学学报, 2009, 11(6): 737-743.http://d.wanfangdata.com.cn/Periodical/dqxxkx200906008 [Qin Chengzhi, Lu Yanjun, Bao Lili, et al.Simple digital terrain analysis software (SimDTA 1.0) and its application in fuzzy classification of slope positions: A case of a small catchment in Nenjiang watershed, northeast China. Journal of Geo-Information Science, 2009, 11(6): 737-743.]
[23] Zhu A X, Band L E, Vertessy R, et al.Derivation of soil properties using a soil land inference model (SoLIM). Soil Science Society of America Journal, 1997, 61: 523-533.https://www.soils.org/publications/sssaj/abstracts/61/2/SS0610020523
[24] Park S J, van de Giesen N. Soil-landscape delineation to define spatial sampling domains for hillslope hydrology. Journal of Hydrology, 2004, 295: 28-46.http://linkinghub.elsevier.com/retrieve/pii/S0022169404001155
[25] Qin C Z, Zhu A X, Shi X, et al.Quantification of spatial gradation of slope positions. Geomorphology, 2009, 110: 152-161.http://linkinghub.elsevier.com/retrieve/pii/S0169555X0900155X
[26] Gharari S, Hrachowitz M, Fenicia F, et al.Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences, 2011, 15(11): 3275-3291.http://www.hydrol-earth-syst-sci.net/15/3275/2011/
[27] R. S J, De Gloria S D, Elliot R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 1999, 5: 1-4.
[28] Jenness J.Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v. 1.2. Jenness Enterprises, 2006.
[29] Weiss A D.Topographic positions and landforms analysis (Conference Poster). ESRI International User Conference, San Diego,CA, 2001: 9-13.
[30] Skidmore A K.Terrain positions mapped from a gridded digital elevation model. International Journal of Geographical Information Systems, 1990, 4(1): 33-49.https://www.tandfonline.com/doi/full/10.1080/02693799008941527
[31] Breiman L. Random Forests. Mach: Learn, 2001.
[32] Cutler D R, Edwards T C, Beard K H, et al.Random forests for classification in ecology. Ecology, 2007, 88: 2783-2792.http://doi.wiley.com/10.1890/07-0539.1
DOI: 10.1890/07-0539.1     
[33] Grimm R, Behrens T, Märker M, et al.Soil organic carbon concentrations and stocks on Barro Colorado Island: Digital soil mapping using random forests analysis. Geoderma, 2008, 146: 102-113.http://linkinghub.elsevier.com/retrieve/pii/S0016706108001262
[34] Genuer R, Poggi J M, Tuleau-Malot C.Variable selection using random forests. Pattern Recognition Letters, 2010, 31: 2225-2236.http://linkinghub.elsevier.com/retrieve/pii/S0167865510000954
[35] 杨琳, 朱阿兴, 李宝林, . 应用模糊C均值聚类获取土壤制图所需土壤—环境关系知识的方法研究. 土壤学报, 2007, 44(5): 16-23.http://d.wanfangdata.com.cn/Periodical/trxb200705003 [Yang Lin, Zhu Axing, Li Baolin, et al.Extraction of knowledge about soil-environment relationship for soil mapping using fuzzy c-means (FCM) clustering. Acta Pedologica Sinica. 2007, 44(5): 16-23.]
[36] 杨琳, 朱阿兴, 秦承志, . 一种基于样点代表性等级的土壤采样设计方法. 土壤学报, 2011, 48(5): 938-945.
[Yang Lin, Zhu Axing, Qin Chengzhi, et al.A soil sampling method based on representativeness grade of sampling points. Acta Pedologica Sinica, 2011, 48(5): 938-945.]
[1] 党云晓,张文忠,谌丽,湛东升. 居民幸福感的城际差异及其影响因素探析——基于多尺度模型的研究[J]. 地理研究, 2018, 37(3): 539-550.
[2] 柳林,姜超,周素红,刘凯,徐冲,曹晶晶. 城市入室盗窃犯罪的多尺度时空格局分析——基于中国H市DP半岛的案例研究[J]. 地理研究, 2017, 36(12): 2451-2464.
[3] 康鑫,王彦文,秦承志,程维明,赵尚民,朱阿兴,张文诗. 多分析尺度下综合判别的地形元素分类方法[J]. 地理研究, 2016, 35(9): 1637-1646.
[4] 周宇建,张永勇,花瑞祥,左其亭,陈豪. 淮河中上游浮游植物时空分布特征及关键环境影响因子识别[J]. 地理研究, 2016, 35(9): 1626-1636.
[5] 李少英,吴志峰,李碧莹,刘轶伦,陈晓越. 基于互联网房产数据的住宅容积率多尺度时空特征——以广州市为例[J]. 地理研究, 2016, 35(4): 770-780.
[6] 徐芝英,胡云锋,甄霖,庄大方. 基于小波的浙江省NDVI与自然—人文因子多尺度空间关联分析[J]. 地理研究, 2015, 34(3): 567-577.
[7] 高江波, 吴绍洪, 蔡运龙. 区域植被覆盖的多尺度空间变异性——以贵州喀斯特高原为例[J]. 地理研究, 2013, 32(12): 2179-2188.
[8] 程先富, 余芬. 安徽省土壤侵蚀空间分布及其与环境因子的关系[J]. 地理研究, 2010, 29(8): 1461-1470.
[9] 俞肇元, 袁林旺, 闾国年, 谢志仁, 张季一, 梅伟长. 西北太平洋边缘海区海面变化多尺度解析及空间分异[J]. 地理研究, 2009, 28(6): 1644-1655.
[10] 朱晓华, 李亚云. 土地利用类型结构的多尺度转换特征[J]. 地理研究, 2008, 27(6): 1235-1242.
[11] 王红, 宫鹏, 刘高焕. 黄河三角洲多尺度土壤盐分的空间分异[J]. 地理研究, 2006, 25(4): 649-658.
[12] 齐玉春, 董云社, 耿元波, 杨小红, 刘立新, 李明峰, 刘杏认. 内蒙古羊草草原不同物候期CH4通量日变化特征与日通量比较[J]. 地理研究, 2004, 23(6): 795-804.
[13] 董云社, 齐玉春, Manfred Domroes, 耿元波, 杨小红, 刘立新, 刘杏认. 内蒙古温带半干旱羊草草原N2O通量及其影响因素[J]. 地理研究, 2004, 23(6): 776-784.
[14] 程先富, 史学正, 于东升, 潘贤章. 兴国县森林土壤有机碳库及其与环境因子的关系[J]. 地理研究, 2004, 23(2): 211-217.
[15] 莫兴国. 冠层表面阻力与环境因子关系模型及其在蒸散估算中的应用[J]. 地理研究, 1997, 16(2): 81-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《地理研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn