Please wait a minute...
 首页  期刊介绍 期刊订阅 广告合作 联系我们 English
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
地理研究    2018, Vol. 37 Issue (12): 2554-2566     DOI: 10.11821/dlyj201812015
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
城市流动人口居住自选择中的空间权衡分析——以成都市为例
张少尧1,2(),时振钦1,2,宋雪茜3,邓伟1,2()
1. 中国科学院水利部成都山地灾害与环境研究所/山区发展研究中心,成都 610041
2. 中国科学院大学,北京 100049
3. 成都信息工程大学管理学院,成都 610225
Space trade-offs analysis in the urban floating population residential self-selection: A case study of Chengdu
ZHANG Shaoyao1,2(),SHI Zhenqin1,2,SONG Xueqian3,DENG Wei1,2()
1. Institute of Mountain Hazards and Environment/Research Center for Mountain Development, CAS, Chengdu 610041, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Chengdu University of Information Technology College of Management, Chengdu 610225, China
全文: PDF (1274 KB)   HTML
输出: BibTeX | EndNote (RIS)     
摘要 

基于成都市主城区各街道的流动人口数据,分析2010-2015年流动人口规模的空间分布格局及居住空间分异程度,并从流动人口行为决策的视角选取影响变量,分析其对居住自选择的影响程度及其空间差异,据此揭示居住自选择中的空间权衡过程,探讨流动人口的空间权衡对其居住自选择和居住空间格局形成的作用。结果表明:2010-2015年,成都流动人口在主城区南部和城市中心快速增加,其集聚态势为西高东低;流动人口相较于本地户籍人口表现出一定程度的居住空间分异性;流动人口占常住人口比、居住区面积、房租、公交、企业及生活服务设施对流动人口居住自选择有明显影响,且流动人口占常住人口比、居住区面积和房租影响显著,但影响关系受流动人口空间自相关影响显著;地理加权回归结果显示不同变量对居住自选择的解释能力存在空间差异性,流动人口通过不同变量空间分布的差异性权衡不同区域,以此完成居住自选择并最终形成居住空间格局。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张少尧
时振钦
宋雪茜
邓伟
关键词 居住自选择空间权衡流动人口地理加权回归成都市 
Abstract

A large floating population has entered urban areas under the rapid urbanization in China. However, their residential space pattern is strongly affected by residential self-selection, which has reconstructed the urban population distribution pattern and social space. This study examines urban floating population residential space pattern and its formation process, by using the floating population data of 2010 and 2015 in the yearbooks of Chengdu downtown block, and choosing influence variables from the perspective of behavioral decision made by the urban floating population. Therefore, the aims of this study are to analyze the influence of urban characteristic variables for residential self-selection and the influences' spatial differentiation, and to reveal process of space trade-offs in residential self-selection and its role in the formation of urban floating population residential space pattern. The results show that from 2010 to 2015, the urban floating population of Chengdu increased rapidly in the southern part of the downtown area and in the urban centers, and a significant space agglomeration situation featured by low-west and high-east is obviously reflected. Moreover, residential space pattern of urban floating population shows that the level of residential segregation is partially related to the residential space pattern of the registered population, but a notable degree of residential segregation has reduced from 2010 to 2015. More importantly, the study proves that the proportion of urban floating population in permanent residential population, residential land area, housing rent, public transportation, enterprise, hospital, drugstore, restaurant and marketplace have influences on floating population residential self-selection. In addition, the proportion of urban floating population in permanent residential population, residential land area and housing rent are the three significant variables in the spatial error model, but it is dramatically impacted by spatial autocorrelation of floating population statistic block. A major contribution of this study is that the spatial differentiation of the variables' influence on residential self-selection is verified by using geographic weighting regression (GWR), and it reveals the process of urban floating population space trade-offs on how to realize residential self-selection by weighting spatial variability of variables’ influence among different urban regions. That is to say, the spatial difference of living cost, employment opportunities, living environment and commuting costs have shaped the floating population residential space pattern, which is a complex reflection of the urban spatial perception, spatial trade-offs and spatial self-selection of floating population. It can help us to deeply understand the formation process of urban floating population residential space pattern, and provide references to promote community integration and urban management.

Key wordsresidential self-selection    space trade-offs    floating population    GWR    Chengdu
收稿日期: 2018-07-10      出版日期: 2018-12-24
基金资助:国家自然科学基金项目(41471469);中国科学院院长基金(2017)
引用本文:   
张少尧, 时振钦, 宋雪茜等 . 城市流动人口居住自选择中的空间权衡分析——以成都市为例[J]. 地理研究, 2018, 37(12): 2554-2566.
ZHANG Shaoyao, SHI Zhenqin, SONG Xueqian et al . Space trade-offs analysis in the urban floating population residential self-selection: A case study of Chengdu[J]. GEOGRAPHICAL RESEARCH, 2018, 37(12): 2554-2566.
链接本文:  
http://www.dlyj.ac.cn/CN/10.11821/dlyj201812015      或      http://www.dlyj.ac.cn/CN/Y2018/V37/I12/2554
Fig. 1  成都市主城区行政区划
Fig. 2  2010-2015年成都市主城区流动人口增长趋势及占常住人口的比例
Fig. 3  2010年和2015年成都主城区流动人口居住空间分异程度
Fig. 4  流动人口同各变量的相关系数及相关示意图
变量 经典线性回归 空间滞后模型 空间误差模型
Coefficient Probability VIF Coefficient Probability Coefficient Probability
占常住人口比 0.314 0.003* 1.313 0.335 0.00014* 0.374 0.00002*
街道面积 -0.001 0.070 6.244 -0.00082 0.160 -0.000 41 0.461
房租 -1109.536 0.039* 1.9154 -670.731 0.175 -1012.775 0.049*
居住区面积 5276.621 0.0007* 3.5994 4063.539 0.002* 3961.595 0.009*
企业 13.907 0.3617 3.6604 10.644 0.423 9.322 0.419
公交 26.576 0.553 4.493 33.328 0.394 27.622 0.485
商场 -81.003 0.143 5.841 -51.369 0.288 -43.318 0.297
药店 627.435 0.0256* 4.788 503.612 0.037* 310.010 0.176
医院 -213.722 0.397 4.377 -64.306 0.771 149.298 0.469
餐馆 0.434 0.995 3.8097 -52.431 0.368 -67.974 0.189
CONSTANT 42212.844 0.030* - 15053.04 0.434 37068.27 0.035*
Lag coeff - - 0.345 0.004* - -
LAMBDA - - - - - 0.617 0.000*
R2 0.566 0.612 0.660
Likelihood Ratio - - - 6.6459 0.009* 12.0361 0.0005*
Moran's I 0.204 0.001* - - - - -
Tab. 1  流动人口回归分析结果
Fig. 5  变量回归系数及残差空间分布
Fig. 6  流动人口居住自选择中的空间权衡过程
[1] Litman T.Land use impacts on transport how land use factors affect travel behavior. Land Use Planning, 2005.
[2] Cao X, Yang W.Examining the effects of the built environment and residential self-selection on commuting trips and the related CO2 emissions: An empirical study in Guangzhou, China. Transportation Research Part D: Transport and Environment, 2017, 52: 480-494.https://linkinghub.elsevier.com/retrieve/pii/S1361920915302455
[3] Scheiner J.Transport costs seen through the lens of residential self-selection and mobility biographies. Transport Policy, 2016: 1-12.http://www.sciencedirect.com/science/article/pii/S0967070X16305522
[4] Ettema D, Nieuwenhuis R.Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?. Journal of Transport Geography, 2017, 59: 146-155.https://linkinghub.elsevier.com/retrieve/pii/S0966692316301892
[5] Booneheinonen J, Gordonlarsen P, Guilkey D K, et al.Environment and physical activity dynamics: The role of residential self-selection. Psychology of Sport & Exercise, 2011, 12(1): 54-60.http://www.sciencedirect.com/science/article/pii/S1469029209001101
[6] 廖邦固, 徐建刚, 梅安新. 1947-2007年上海中心城区居住空间分异变化: 基于居住用地类型视角. 地理研究, 2012, 31(6): 1089-1102.http://www.cqvip.com/QK/95732X/201206/42313583.html [Liao Banggu, Xu Jiangang, Mei Anxin.Evolution of residential differentiation in central Shanghai city (1947-2007): A view of residential land-use types. Geographical Research, 2012, 31(6): 1089-1102.]
[7] Vos J D, Witlox F.Do people live in urban neighbourhoods because they do not like to travel? Analysing an alternative residential self-selection hypothesis. Travel Behaviour & Society, 2016, 4: 29-39.http://www.sciencedirect.com/science/article/pii/S2214367X15000435
[8] Schwanen T, Mokhtarian P L.What affects commute mode choice: Neighborhood physical structure or preferences toward neighborhoods?. Journal of Transport Geography, 2005, 13(1): 83-99.http://linkinghub.elsevier.com/retrieve/pii/S0966692304000894
[9] Pinjari A R, Bhat C R, Hensher D A.Residential self-selection effects in an activity time use behavior model. Transportation Research Part B Methodological, 2009, 43(7): 729-748.https://linkinghub.elsevier.com/retrieve/pii/S0191261509000198
[10] 林世伟. “三江并流”区生态系统服务空间权衡与协同关系研究. 昆明: 云南大学博士学位论文, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10673-1016230608.htm
[Lin Shiwei.Spatial trade-offs and synergies among ecosystem services in the Three Parallel Rivers region. Kunming: Doctoral Dissertation of Yunnan University, 2016.]
[11] Sener I N, Pendyala R M, Bhat C R.Accommodating spatial correlation across choice alternatives in discrete choice models: An application to modeling residential location choice behavior. Journal of Transport Geography, 2011, 19(2): 294-303.https://linkinghub.elsevier.com/retrieve/pii/S0966692310000451
[12] 宇林军, 孙丹峰, 彭仲仁, . 城市家庭居住地选址的空间异质性分析: 以美国佛罗里达州橙县为例. 地理科学进展, 2012, 31(8): 1024-1031.http://www.cqvip.com/QK/96015A/201208/42984344.html [Yu Linjun, Sun Danfeng, Peng Zhongren, et al.spatial heterogeneity analysis of household residential location choice: A case study in Orange county, Florida, USA. Progress in Geography, 2012, 31(8): 1024-1031.]
[13] 雷华. 农民工居住现状及其对心理融入的影响研究. 武汉: 华中农业大学博士学位论文, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10504-1013335730.htm
[Lei Hua.Inhabitation situation and its impact on psychological integration of migrant workers: Taking Hubei province as an example. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2013.]
[14] 任远. 城市流动人口的居留模式与社会融合. 上海: 上海三联书店, 2014.
[Ren Yuan.The residence mode and social integration of urban floating population. Shanghai: Joint Publishing, 2014.]
[15] 唐波. 长沙市城市居民居住区位选择研究. 长沙: 湖南大学硕士学位论文, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10532-1014121575.htm
DOI: 10.7666/d.Y2355557     
[Tang Bo.The research on residential location choices of residents in Changsha city. Changsha: Master Dissertation of Hunan University, 2013.]
[16] Yuting Liu, Shenjing He, Fulong Wu.Housing differentiation under market transition in Nanjing, China. Professional Geographer, 2012, 64(4): 554-571.http://www.tandfonline.com/doi/abs/10.1080/00330124.2011.614565
[17] 桂静. 流动人口的分层因素与居住选择的相关研究. 上海: 华东理工大学博士学位论文, 2015.
[Gui Jing.Study on migrants' stratification factor and residential choices: Based on survey in 7 cities in 2013. Shanghai: Doctoral Dissertation of East China University of Science and Technology, 2015.]
[18] 周春山, 杨高, 王少剑. 深圳农民工集聚空间的演变特征及影响机制. 地理科学, 2016, 36(11): 1643-1653.http://www.cnki.com.cn/Article/CJFDTotal-DLKX201611006.htm
[Zhou Chunshan, Yang Gao, Wang Shaojian.The characters and influencing mechanism of spatial-temporal variations of migrant workers in Shenzhen. Scientia Geographica Sinica, 2016, 36(11): 1643-1653.]
[19] 肖扬, 陈颂, 汪鑫, . 全球城市视角下上海新移民居住空间分异研究. 城市规划, 2016, 40(3): 25-33.
[Xiao Yang, Chen Song, Wang Xin, et al.Study on segregation of residential space of new migrants in Shanghai from the perspective of global city. Planning Studies, 2016, 40(3): 25-33.]
[20] 王洋, 张玉玲, 张虹鸥. 广州市家庭收入与住房特征对应关系的区位差异性. 地理科学进展, 2017, 36(2): 151-158.http://d.wanfangdata.com.cn/Periodical/dlkxjz201702002 [Wang Yang, Zhang Yuling, Zhang Hong'ou. Spatial variations in the correlation between household income and housing characteristics in Guangzhou city. Progress in Geography, 2017, 36(2): 151-158.]
[21] 钟奕纯, 冯健. 城市迁移人口居住空间分异: 对深圳市的实证研究. 地理科学进展, 2017, 36(1): 125-135.http://www.cnki.com.cn/Article/CJFDTotal-DLKJ201701013.htm [Zhong Yichun, Feng Jian.Residential spatial differentiation of migrant population within the city: A case study of Shenzhen. Progress in Geography, 2017, 36(1): 125-135.]
[22] 田盼盼, 朱宇, 林李月, . 省际与省内流动人口空间分布及其影响因素的差异: 以福建省为例. 人口学刊, 2015, 37(6): 56-67.http://d.wanfangdata.com.cn/Periodical/rkxk201506006 [Tian Panpan, Zhu Yu, Lin Liyue, et al.Differences in the spatial distribution and its determinants between inter- and intra-provincial floating population: The case of Fujian province. Population Journal, 2015, 37(6): 56-67.]
[23] Gilbert A.Rental housing: The international experience. Habitat International, 2016, 54: 173-181.https://linkinghub.elsevier.com/retrieve/pii/S0197397515302058
[24] Clark W A.Changing residential preferences across income, education, and age: Findings from the multi-city study of ur-ban inequality. Urban Affairs Review, 2009, 44(3): 334-355.http://journals.sagepub.com/doi/10.1177/1078087408321497
[25] 李志刚, 吴缚龙, 肖扬. 基于全国第六次人口普查数据的广州新移民居住分异研究. 地理研究, 2014, 33(11): 2056-2068.http://d.wanfangdata.com.cn/Periodical/dlyj201411006 [Li Zhigang, Wu Fulong, Xiao Yang.Residential segregation of new migrants in Guangzhou, China: A study of the 6th census. Geographical Research, 2014, 33(11): 2056-2068.]
[26] 蒋亮, 冯长春. 基于社会—空间视角的长沙市居住空间分异研究. 经济地理, 2015, 35(6): 78-86.http://d.wanfangdata.com.cn/Periodical/jjdl201506011 [Jiang Liang, Feng Changchun.The study of residential differentiation in Changsha based on the social-spatial perspective. Economic Geography, 2015, 35(6): 78-86.]
[27] 柴宏博, 冯健. 基于家庭生命历程的北京郊区居民行为空间研究. 地理科学进展, 2016, 35(12): 1506-1516.http://d.wanfangdata.com.cn/Periodical/dlkxjz201612007 [Chai Hongbo, Feng Jian.Behavior space of suburban residentsin Beijing based on family life course. Progress in Geography, 2016, 35(12): 1506-1516.]
[28] 陈杰, 郝前进. 快速城市化进程中的居住隔离: 来自上海的实证研究. 学术月刊, 2014, 46(5): 17-28.http://www.cnki.com.cn/Article/CJFDTotal-XSYK201405003.htm
[Chen Jie, Hao Qianjin.Residential segregation under rapid urbanization in China: Evidence from Shanghai. Academic Monthly, 2014, 46(5): 17-28.]
[29] Wang Y, Wang S, Li G, et al.Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Applied Geography, 2017, 79: 26-36.https://linkinghub.elsevier.com/retrieve/pii/S0143622816307597
[30] 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程. 北京: 科学出版社, 2010: 126-131.
[Wang Jinfeng, Liao Yilan, Liu Xin.A tutorial on Spatial Data Analysis. Beijing: Science Press, 2010: 126-131.]
[31] Mcmillen D P.Geographically weighted regression: The analysis of spatially varying relationships. American Journal of Agricultural Economics, 2004, 86(2): 554-556.https://academic.oup.com/ajae/article-lookup/doi/10.1111/j.0002-9092.2004.600_2.x
[32] 陈岚, 曾坚, 周波. 成都城市空间形态的生态进程与可持续发展研究. 建筑学报, 2009, (12): 14-17.http://d.wanfangdata.com.cn/Periodical/jzxb200912004 [Chen Lan, Zeng Jian, Zhou Bo.Study on the ecological course and sustainable development of chengdu urban spatial form. Architectural Journal, 2009, (12): 14-17.]
[33] 宁越敏. 中国城市化特点、问题及治理. 南京社会科学, 2012, (10): 19-27.http://www.cqvip.com/QK/80048X/201210/43631808.html [Ning Yuemin.A study on the urbanization, urban problems and solution in China. Social Sciences in Nanjing, 2012, (10): 19-27.]
[1] 赵美风,刘盛和,戚伟. 社区尺度下流动人口聚居区空间识别与尺度效应——以北京市为例[J]. 地理研究, 2018, 37(6): 1208-1222.
[2] 吴成永,陈克龙,曹广超,段水强,薛华菊,鄂崇毅,罗正霞. 近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析[J]. 地理研究, 2018, 37(4): 717-730.
[3] 武鹏,李同昇,李卫民. 县域农村贫困化空间分异及其影响因素——以陕西山阳县为例[J]. 地理研究, 2018, 37(3): 593-606.
[4] 杨振山,王玉璇. 开发区流动人口生计资本测量及生计空间特征分析——以广州南沙新区为例[J]. 地理研究, 2018, 37(11): 2153-2164.
[5] 郭源园,李莉. 西部内陆省区区域经济差异影响因素——以重庆为例[J]. 地理研究, 2017, 36(5): 926-944.
[6] 冯长春,李天娇,曹广忠,沈昊婧. 家庭式迁移的流动人口住房状况[J]. 地理研究, 2017, 36(4): 633-646.
[7] 徐冲,柳林,周素红,姜超. 微观空间因素对街头抢劫影响的空间异质性——以DP半岛为例[J]. 地理研究, 2017, 36(12): 2492-2504.
[8] 王宇航,赵鸣飞,康慕谊,左婉怡. 黄土高原地区NDVI与气候因子空间尺度依存性及非平稳性研究[J]. 地理研究, 2016, 35(3): 493-503.
[9] 冯建喜,汤爽爽,杨振山. 农村人口流动中的“人地关系”与迁入地创业行为的影响因素[J]. 地理研究, 2016, 35(1): 148-162.
[10] 孙克,徐中民. 基于地理加权回归的中国灰水足迹人文驱动因素分析[J]. 地理研究, 2016, 35(1): 37-48.
[11] 杨文越,李涛,曹小曙. 广州市社区出行低碳指数格局及其影响因素的空间异质性[J]. 地理研究, 2015, 34(8): 1471-1480.
[12] 孙倩,汤放华. 基于空间扩展模型和地理加权回归模型的城市住房价格空间分异比较[J]. 地理研究, 2015, 34(7): 1343-1351.
[13] 戚伟, 刘盛和. 中国城市流动人口位序规模分布研究[J]. 地理研究, 2015, 34(10): 1981-1993.
[14] 林李月, 朱宇, 梁鹏飞, 肖宝玉. 基于六普数据的中国流动人口住房状况的空间格局[J]. 地理研究, 2014, 33(5): 887-898.
[15] 田明. 中国东部地区流动人口城市间横向迁移规律[J]. 地理研究, 2013, 32(8): 1486-1496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《地理研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn