[1] 任继周. 草业科学研究方法. 北京:中国农业出版社,1998.201~213.[2] Xu B, Xin X P, Qin Z H, et al. Development of spatial GIS databases for monitoring on dynamic state of grassland productivity and animal loading balance in northern China. Geoinformatics 2004, Proceeding of the 12th International Conference, University of Gavle Press, Sweden. 2004, (2): 585~592.[3] 李建龙,蒋平. 遥感技术在大面积天然草地估产和预报中的应用探讨.武汉测绘科技大学学报,1998,23(2):153~157.[4] 黄敬峰,王秀珍,胡新博.新疆北部不同类型天然草地产草量遥感监测模型.中国草地,1999,(11):1~11,18.[5] 黄敬峰,王秀珍,王人潮,等.天然草地牧草产量与气象卫星植被指数的相关性分析.农业现代化研究,2000,21(1):33~36.[6] 黄敬峰,王秀珍,王人潮,等.天然草地牧草产量遥感综合监测预测模型研究.遥感学报,2001,5(1):71~76.[7] 王正兴,刘闯,赵冰茹,等.利用MODIS增强型植被指数反演草地地上生物量.兰州大学学报,2005,41(2):10~16.[8] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局.植物生态学报,2004,28(4):491~498.[9] 牛志春,倪绍祥.青海湖环湖地区草地植被生物量遥感监测模型.地理学报,2003,58(5):395~702.[10] Kanemasu E T, Demetriades-Shah T H, Su H, et al. Estimating grassland biomass using remotely sensed data. In:Applications of Remote Sensing in Agriculture, Steven M D and Clark J A.(eds. ), London and Boston: Butterworth-Heinemanm, 1990.185~199.[11] Roy P S, Jonna S, Pant D N. Evaluation of grasslands and spectral reflectance relationship to its biomass in Kanha National Park (M.P.), India. Geocarto International, 1991, 6: 39~45.[12] Purevdorj T, Tateishi R, Ishiyama T, et al. Relationship between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998, 19: 3519~3535.[13] Rasmussen M S. Developing simple, operational, consistent NDVI-vegetation models by apply environmental and climatic information: Part Ⅰ. Assessment of net primary production. International Journal of Remote Sensing, 1998, 19: 97~117.[14] Gao J. Quantification of grassland properties: how it can benefit from geoinformatic technologies? International Journal of Remote Sensing, 2006, 27(7): 1351~1365.[15] Deering D W.Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1978, 338.[16] Liu H Q, Huete A R.A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sensing, 1995, 33: 457~465.[17] Qi J A.Modified soil adjusted vegetation index. Remote Sensing of Environment, 1988, 25: 295~309.[18] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices.Remote Sensing of Environment, 1996, 55: 95~107.[19] Huete A R.A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25: 295~309.[20] 黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统.地理研究,2005,24(1): 19~27.[21] Hornik K M,Stinchcombe M,White H. Multilayer feed forward networks are universal approximators. Neural Networks,1989,2(5): 359~366.[22] Simpson G. Crop yield prediction using a CMAC neural network. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1994, 2315, 160~171.[23] Jiang D, Yang X, Clinton N, et al. An artificial neural network model for estimating crop yields using remotely sensed information. International Journal of Remote Sensing, 2004, 25(9): 1723~1732. |