[1] 陈蜜,易尧华,刘志刚, 等. 基于分块特性的高光谱影像波段选取方法的研究. 测绘通报,2006(3): 10~13.
[2] 杨哲海, 张雅争, 宫大鹏,等. 基于Tabu搜索的高光谱影像特征选择. 海洋测绘, 2006, 26(4): 11~14.
[3] 王长耀, 刘正军, 颜春燕. 成像光谱数据特征选择及小麦品种识别实验研究. 遥感学报, 2006,10(2):249~255.
[4] Liu Y, Zheng Y F. FS_SFS:A novel feature selection method for support vector machines. Pattern Recognition, 2006, 39: 1333~1345.
[5] Kohavi R, John G H. Wrappers for feature subset selection. Artif. Intell. ,1997, 97: 273~324.
[6] Huang Ch L, Wang Ch J.A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, 2006, 31: 231~240.
[7] Mao K Z.Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 60~67.
[8] Yu E, Cho S. Ensemble based on GA wrapper feature selection. Computers & Industrial Engineering, 2006, 51(1): 111~116.
[9] Bi J, Bennett K P, Embrechts M, et al. Dimensionality reduction via sparse support vector machines. J. Mach. Learn. Res. 2003, 3: 1229~1243.
[10] Sikora R, Piramuthu S. Framework for efficient feature selection in genetic algorithm based data mining. European Journal of Operational Research, 2007, 180(2): 723~737.
[11] Cover T M. The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics, 1974, 1: 116~117.
[12] Elashoff J D, Elashoff R M, Goldman G E.On the choice of variables in classification problems with dichotomous variables. Biometrika, 1967, 54: 668~670.
[13] Toussaint G T.Note on optimal selection of independent binary-valued features for pattern recognition. IEEE Transactions on Information Theory IT, 1971,17: 618.
[14] Meiri R, Zahavi J. Using simulated annealing to optimize the feature selection problem in marketing applications. European Journal of Operational Research, 2006, 171: 842~858.
[15] Liu H, Motoda H. Feature Extraction, Construction, and Selection: A Data Mining Perspective.Dordrecht: Kluwer Academic Publishers,1998.
[16] Marill T, Green D M. On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory, 1963, 9: 11~17.
[17] Raymer M L, Punch W F, Goodman E D, et al. Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. , 2000, 4(2): 164~171.
[18] 杨青生, 黎夏. 基层遗传算法自动获取CA模型的参数——以东莞市城市发展模拟为例.地理研究,2007,26(2): 226~231.
[19] Corts C, Vapnik V. Support vector networks. Machine Learning, 1995, 20: 273~ 297.
[20] Vapnik V N.The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
[21] Cortes C, Vapnik V N. Support vector networks. Mach. Learn. , 1995, 20(3): 273~297.
[22] 邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机. 北京: 科学出版社, 2004.
[23] Pontil M, Verri A.Support vector machines for 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(6), 637~646.
[24] Bradley P S, Mangasarian O L, Street W N.Feature selection via mathematical programming. INFORMS Journal on Computing, 1998, 10: 209~217.
[25] Guyon I, Weston J, Barnhill S, et al.Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1~3): 389~422.
[26] Yu E, Cho S.GA-SVM wrapper approach for feature selection in keystroke dynamics identity verification. Proceedings of 2003 INNS-IEEE International Joint Conference on Neural Networks, 2253~2257.
[27] Weston J, Mukherjee S, Chapelle O, et al. Feature selection for SVMs. Advances in Neural Information Processing Systems, 13.Cambridge, MA: MIT Press, 2001.
[28] Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46 (123): 131~159.
[29] Lee J H, L in C J.Automatic Model Selection for Support Vector Machines. Taipei: Taiwan University, 2000.
[30] Bengio Y.Gradient-based optimization of hyperparameters. Neural Computation, 2000, 12(8): 1889~1900.
[31] Keerthi S S.Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transon Neural Networks, 2002, 13(5):1225~1229.
[32] Hsu C W, Chang C C, Lin C J.A practical guide to support vector classification, 2003. Available at:http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
[33] Jarecke P. EO-1/Hyperion Science Data User's Guide. TRW Space, Defense & Information System, 2001.
|