[1] Ciais P, Tans P P, Trolier M, et al. A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C ratio of atmospheric CO2. Science, 1995,269: 1098~1102.
[2] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172.
[3] Tans P, White J W C. In balance, with a little help from the plants. Science, 1998,281: 183~184.
[4] Schlesinger W H, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 2001, 411: 466~469.
[5] Walker B, Will S. A synthesis of GCTE and related research. in IGBP Science, 1997, No.1, IGBP Secretariat, Sweden pp32.
[6] 方精云,朴世龙,赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报,2001,25(5):594~602.
[7] 郑度,张荣祖,杨勤业.试论青藏高原的自然地带. 地理学报, 1979,34(1):1~11.
[8] 郑度,李炳元.青藏高原自然环境的演化与分异. 地理研究,1990,9(2):1~10.
[9] 罗天祥,李文华,冷允法,等. 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布. 地理研究,1998,17(4):337~344.
[10] 徐兴奎,陈红,LEVY Jason K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析. 科学通报,2008,53(4): 456 ~462.
[11] 张永强, 唐艳鸿, 姜杰.青藏高原草地生态系统土壤有机碳动态特征. 中国科学(D),2006, 36 (12): 1140~1147.
[12] 杨元合,朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报,2006, 30 (1):1~8
[13] Lieth H, Box E. Evapotranspiration and primary productivity; C.W. Thornthwaite Memorial Model. C.W. Thornthwaite Assoc., Centerton-Elmer, NJ. Publ. Cllimatol, 1972,25(2):37~46.
[14] Lieth H. Primary production: Terrestrial ecosystems. Human Ecol, 1973,1: 303~332.
[15] Meentemeyer V, Box E O, Thompson R. World patterns and amounts of terrestrial plant litter production. Bioscience, 1982,32:125~128.
[16] Potter C S, Klooster S A, Brooks V. Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems, 1999,2(1): 36~48.
[17] Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972,9:747~766.
[18] Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993,7(4): 811~841.
[19] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev, 1972,100: 81~92.
[20] Thornthwaite C W, Mather J R. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Inst. Technol. Publ. Clim. 1957,X(3).
[21] Vorosmarty C J, Moore III B, Grace A L,et al. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles, 1989,3:241~265.
[22] Pei Z, Ouyang H, Zhou C, Xu X. Carbon balance in an alpine grassland ecosystem on the Tibetan Plateau. Journal of Integrative Plant Biology. 2009,51(5):521~526.
[23] Knyazikhin Y, Martonchik J V, Myneni R B,et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research,1998,103: 32257~32276.
[24] Daly C, Taylor G H, Gibson W P, et al. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE,2000,43: 1957~1962.
[25] New M, Hulme M, Jones P D. Global 30-year mean monthly climatology, 1961-1990(New et al.). Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 2000.
[26] Webb R W, Rosenzweig C E, Levine E R. Global soil texture and derived water-holding capacities (Webb et al.), 2000, Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
[27] 高清竹,万运帆,李玉娥,等. 藏北高寒草地NPP变化趋势及其对人类活动的响应. 生态学报,2007,27(11):4612~4619.
[28] Raich J W, Rastetter E B, Melillo J M, et al. Potential net primary production in South America: Application of a global model. Ecological Application, 1991, 1:399~429.
[29] Schindler D W. The mysterious missing sink. Nature, 1999, 398:105~106.
[30] 方精云. 探索CO2失汇之谜. 植物生态学报,2002,26(2):255~256.
[31] ZHAO L, LI Y, XU S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12:1940~1953.
[32] KATO T,TANG Y,GU S, et al. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 2006, 12:1285~1298.
|