[1] 兰安军, 张百平, 熊康宁, 等. 黔西南脆弱喀斯特生态环境空间格局分析. 地理研究, 2003, 22(6):733~741.
[2] Yuan D X. On the Karst ecosystem. Acta Geologica Sinica, 2001, 75: 336~338.
[3] 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨. 中国岩溶, 2002, 21(2): 101~105.
[4] 中国科学院学部. 关于推进西南岩溶地区石漠化综合治理的若干建议. 地球科学进展, 2003, 18(4): 489~492.
[5] 李阳兵, 王世杰, 王济. 岩溶生态系统的土壤特性及其今后研究方向. 中国岩溶, 2006, 25(4):285~289.
[6] 任景辰, 张平究, 潘根兴, 等. 岩溶土壤的生态地球化学特征及其指示意义—以贵州贞丰-关岭岩溶石山地区为例. 地球科学进展, 2006, 21(5): 504~512.
[7] 李阳兵, 高明, 邵景安, 等. 岩溶山区不同植被群落土壤生态系统特征研究. 地理科学, 2005, 25(5):606~613.
[8] 龙健, 邓启琼, 江新荣, 等. 西南岩溶地区退耕还林(草)模式对土壤肥力质量演变的影响. 应用生态学报, 2005, 16(7): 1279~1284.
[9] 司彬, 姚小华, 任华东, 等. 黔中喀斯特植被恢复演替过程中土壤理化性质研究. 江西农业大学学报, 2008, 30(6): 1122~1125)
[10] 王韵, 王克林, 邹冬生, 等. 广西喀斯特地区植被演替对土壤质量的影响. 水土保持学报, 2007, 21(6):130~134.
[11] 魏媛, 喻理飞, 张金池. 退化喀斯特植被恢复过程中土壤微生物活性研究. 中国岩溶, 2008, 27(1):63~67.
[12] Glover L.Anne (convenor). Composition of soil microbial and fauna communities: New insight from new technologies. 17th WCSS. Abstracts. Bangkok Thailand, 2002. 263~298.
[13] Gelsomino A, Anneke C. Keijer-Wolters, Cacoo G. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods, 1999, 38:1~15.
[14] Martinez-Iigo M J, P rez-Sanz A, Ortiz I, et al. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and β-galactosidase activity as indiactors of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. Chemosphere 2009, 75:1376~1381.
[15] Marschner P, Yang C H, Lieberi R, et al. Soil and plant specific effect on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 2001, 33:1437~1445.
[16] 李潞滨, 刘振静, 庄彩云, 等. 应用DGGE技术分析青藏铁路沿线的土壤细菌群落多样性. 生态学杂志, 2008, 27(5):751~755.
[17] 杨鑫, 曹靖, 董茂星, 等. 外来树种日本落叶松对森林土壤质量及细菌多样性的影响. 应用生态学报, 2008, 19(10):2109~2116.
[18] Zhang P J, Li L Q, Pan G X, et al.Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environmental Geology, 2006, 51: 609~619.
[19] 李玉辉, 冯正清, 俞筱押. 云南石林公园植被重大变化与意义. 中国岩溶, 2005, 24(3): 212~218.
[20] 张智英, 李玉辉, 柴冬梅, 等. 云南石林公园不同生境蚂蚁多样性研究. 生物多样性, 2005, 13(4): 357~362.
[21] 梁福源, 宋林华, 唐涛. 石林地区土壤性质与喀斯特洼地发育. 地理研究, 2004, 23(3):321~328.
[22] 杨瑞, 喻理飞. 黔中退化喀斯特森林恢复过程中早期群落结构分析. 贵州科学, 2004, 22(3):44~64.
[23] 鲁如坤,等. 土壤农业化学分析方法. 北京, 中国农业科技出版社, 2000. 12~15, 107~111.
[24] Vance E D, Brooks P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19:703~707.
[25] Hofman J, Du ek L, Klánova J, et al. Monitoring microbial biomass and respiration in different soils from the Czech Republic-summary of results. Environment International, 2004, 30:19~30.
[26] Dilly O, Munch J C. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 1998, 27:374~379
[27] Nakatsu C H, Torsvik V, erís L. Soil community analysis using of 16S rDNA polymerase chain reaction products. Soil Science Society of America Journal, 2000, 64:1382~1388.
[28] Weisburg W G, Barns S, Pelletier D A, et al. 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173: 697~703
[29] Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Applied and Environmental Microbiology, 1999, 65:102~109.
[30] Hedrick D B, Peacock A, Stephen J R, et al. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. Journal of Microbiological Methods, 2000, 41:235~248
[31] 何振立. 土壤微生物量及其在养分循环和环境评价中的意义. 土壤, 1997, 2: 61~69.
[32] Kennedy A C, Papaendick R I. Microbial characteristics of soil quality. Journal of Soil and Water Conservation, 1995, 50: 243~248
[33] Cheng W X, Zhang Q L, Coleman D C, et al. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biology and Biochemistry, 1996, 28: 1283~1288.
[34] Anderson T H. Microbial eco-physiological indicator to assess soil quality. Agriculture, Ecosystem and Environment, 2003, 98: 285~293.
[35] Hill G T, Mitkowski N A, Aldrich-Wolfe L. et al. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000, 15: 25~36.
[36] Schloter M, Dilly O, Munch J C. Indicator for evaluating soil quality. Agriculture, Ecosystems and Environment, 2003, 98: 255~262.
[37] Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996, 379: 718~720.
[38] Rutigliano F A, D'Asoli R, De Santo A V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology and Biochemistry, 2004, 36: 1719~1729.
[39] 罗海波, 宋光煜, 何滕兵, 等. 贵州喀斯特山区石漠化治理过程中土壤质量特征研究. 水土保持学报, 2004, 18(6): 112~115.
[40] Singh K P, Mandal T N, Tripathi S K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the sal forest ecosystem of Nepal Himalaya. Ecological Engineering, 2001, 17: 385~ 401.
[41] Lee C S, You Y H, Robinson G R. Secondary succession and natural habitat restoration in abandoned fields of central Korea. Restoration Ecology, 2002, 10: 306~314.
[42] Jia G M, Cao J, Wang C Y, et al. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwuling, northwest China. Forest Ecology and Management, 2005, 217: 117~125.
[43] 郑华, 欧阳志远, 王效科, 等. 不同森林恢复类型对南方红壤侵蚀区土壤质量的影响. 生态学报, 2004, 24(9): 1994~2002.
[44] Zhao W Z, Xiao H L, Liu Z M, et al. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China. Cetena, 2005, 59: 173~186.
[45] Bauhus J, Pare D, C téL. Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 1998, 30: 1077~1089.
[46] Schipper L A, Degens B P, Sparling G P, et al. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry, 2001, 33: 2093~2103.
[47] Ravit B, Ehenfeld J G, H ggblom M M. Effects of vegetation on root-associated microbial communities: A comparison of disturbed versus undisturbed estuarine sediments. Soil Biology and Biochemistry, 2006, 38: 2359~2371.
[48] Rodr guez-Loinaz G, Onaindia M, Amezaga I, et al. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forest. Soil Biology and Biochemistry, 2008, 40: 49~60.
[49] 何寻阳, 王克林, 徐丽丽, 等. 喀斯特地区植被不同演替阶段土壤细菌代谢多样性及其季节变化. 环境科学学报, 2008, 28(12):2590~2596
[50] Zhou J Z, Xia B C, Treves D S, et al. Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology, 2002, 68: 326~334.
[51] Marschner P, Kandeler E, Marshner B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35: 453~461.
[52] 郑华, 欧阳志远, 赵同谦, 等. 不同森林恢复类型对土壤生物学特性的影响. 应用与环境生物学报, 2006, 12(1): 36~43.
[53] 张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析. 微生物学报, 2007, 47(5): 751~756.
[54] Hannam K D, Quideau S A, Kishchuk B E. Forest floor microbial communities in relation to stand composition and harvesting in northern Alberta. Soil Biology and Biochemistry, 2006, 38: 2565~2575.
|