地理研究 ›› 2011, Vol. 30 ›› Issue (4): 601-611.doi: 10.11821/yj2011040003
石晓丽1,2,3, 吴绍洪1, 戴尔阜1, 赵东升1, 潘韬1
收稿日期:
2010-05-21
修回日期:
2011-01-04
出版日期:
2011-04-20
发布日期:
2011-04-20
通讯作者:
吴绍洪(1961-),男,博士,研究员,从事自然地理综合研究。Email: wush@igsnrr.ac.cn
作者简介:
石晓丽(1981-),女,博士,从事自然地理研究。E-mail:shixiaoli_2004@163.com
基金资助:
"十一五"国家科技支撑项目(2006BAD20B05);河北师范大学博士科研启动基金(130526)
SHI Xiao-li1,2,3, WU Shao-hong1, DAI Er-fu1, ZHAO Dong-sheng1, PAN Tao1
Received:
2010-05-21
Revised:
2011-01-04
Online:
2011-04-20
Published:
2011-04-20
摘要: 气候变化会对陆地生态系统的碳吸收产生影响,从而改变其碳的源汇功能。因此,评估未来气候变化下陆地生态系统碳吸收功能面临的风险,可以为中国应对气候变化措施的制定和国际碳排放谈判提供科学依据。本文采用大气-植被相互作用模型对气候变化情景下净生态系统生产力进行模拟,运用线性倾向估计方法确定碳吸收功能风险评估标准,对中国陆地生态系统未来近期、中期和远期的碳吸收功能面临的风险进行了探讨。研究表明:IPCC SRES-B2情景下,气候变化可能会给中国陆地生态系统的碳吸收功能带来风险。风险的范围与程度可能会随着增温幅度的变化而加剧。到本世纪远期,六成左右的生态系统会面临碳吸收功能风险,主要分布在西北地区、东北山区、长江中下游平原地区、华南地区以及西南地区。风险程度随增温幅度增加的变化以发展为主,主要集中在近期到中期阶段。未来气候变化下,西北区将成为危险性高的区域,混交林、荒漠草原和落叶针叶林将成为危险性高的生态系统。
石晓丽, 吴绍洪, 戴尔阜, 赵东升, 潘韬. 气候变化情景下中国陆地生态系统碳吸收功能风险评价[J]. 地理研究, 2011, 30(4): 601-611.
SHI Xiao-li, WU Shao-hong, DAI Er-fu, ZHAO Dong-sheng, PAN Tao. Risk assessment of carbon sequestration for terrestrial ecosystems from climate change in China[J]. GEOGRAPHICAL RESEARCH, 2011, 30(4): 601-611.
[1] Parry M L, Canziani O F, Palutikof J P, et al. IPCC 2007: Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability.Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007.7~22.[2] Yohe G, Leichenko R. Adopting a risk-based approach. Annals of the New York Academy of Sciences 1196(Climate Change Adaptation in New York City: Building a Risk Management Response. New York City Panel on Climate Change 2010 Report), 2010(1196).29~40.[3] Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature,2000,408(6809):184~187.[4] Cramer W, Bondeau A, Woodward F I, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 2001,7(4):357~373.[5] Tate K R, Scott N A, Parshotam A, et al.A multi-scale analysis of a terrestrial carbon budget:Is Zealand a source or sink of carbon? Agriculture Ecosystem Environment,2000,82(1-3):229~246.[6] Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China.Global Change Biology,2003,9(4):536~546.[7] Schroter D, Cramer W, Leemans R, et al. Ecosystem service supply and vulnerability to global change in Europe. Science, 2005,310(5752):1333~1337.[8] Smith T M, Leemans R, Shugart H H. Sensitivity of terrestrial carbon storage to CO2-induced climate change: Comparison of four scenarios based on general circulation models. Climatic Change,1992,21(4):367~384.[9] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change.Global Change Biology,1998,4(2):185~198.[10] Schaphoff S, Lucht W, Gerten D, et al. Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change,2006,74(1-3):97~122.[11] Field C B, Lobell D B, Peters H A, et al. Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources,2007,32(11):1~29.[12] Le Quere C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009,2(12):831~836.[13] Cadule P, Bopp L, Friedlingstein P L. A revised estimate of the processes contributing to global warming due to climate-carbon feedback. Geophysical Research Letters, 2009,36(14):L14705.[14] Frank D C, Esper J, Raible C C, et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature,2010,463(7280):527~530.[15] Friedlingstein P L, Prentice I C. Carbon-climate feedbacks: A review of model and observation based estimates. Current Opinion in Environmental Sustainability, 2010,2(4):251~257.[16] 陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展.地理研究,2001,20(5):564~575.[17] 周涛,仪垂祥,史培军,等.陆地表层碳循环与温度反馈机制研究.地理研究,2002,21(1):45~53.[18] 曹军,张镱锂,刘燕华,等.最近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551~560.[19] Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China.Global Change Biology,2003,9(3):305~315.[20] 李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,33(1):72~79.[21] 刘纪远,于贵瑞,王绍强,等.陆地生态系统碳循环及其机理研究的地球信息科学方法初探.地理研究,2003,22(4):397~405.[22] 方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环.中国科学(D辑),2006,36(6):533~543.[23] 裴志永,周才平,欧阳华.青藏高原高寒草原区域碳估测.地理研究,2010,29(1):102~110.[24] Fang J Y, Chen A P, Peng C H, et al.Changes in forest biomasscarbon storage in China between 1949 and 1998.Science,2001,292(5525):2320~2322.[25] Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbonuptake to climate interannual variability in China.Global Change Biology,2003,9(4):536~546.[26] Cao M K, Tao B, Li K R, et al. Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998.Acta Bota Sin,2003,45(5):552~560.[27] 周涛,史培军,孙睿,等.气候变化对净生态系统生产力的影响.地理学报,2004,59(3):357~365.[28] Gao Z Q, Liu J Y, Cao M K, et al. Impacts of land-use and climate changes on ecosystem productivity and carbon cycle in the cropping-grazing transitional zone in China. Science in China (Series D),2005,48(9):1479~1491.[29] 方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算.中国科学(D辑),2007,37(6):804~812.[30] Tao B, Cao M K, Li K R, et al. Spatial patterns of terrestrial net ecosystem productivity in China during 1981-2000. Science in China (Series D),2007,50(5):745~753.[31] 徐新良,曹明奎,李克让,等.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展,2007,26(6):1~10.[32] 何勇,董文杰,郭晓寅,等.1971~2000年中国陆地植被净初级生产力的模拟.冰川冻土,2007,29(2):226~232.[33] 谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响.自然资源学报,2007,22(2):251~259.[34] Ji J J, Huang M, Li K R. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century.Science in China (Series D), 2008,51(6):885~898.[35] 於琍,曹明奎,陶波,等.基于潜在植被的中国陆地生态系统对气候变化的脆弱性定量评价.植物生态学报,2008,32(3):521~530.[36] Nakicenovic N, Alcamo J, Davis G, et al. Special Report on Emissions Scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change, PNNL-SA-39650. New York, United States. Cambridge University Press, 2000.[37] Xu Y L, Zhang Y, Lin E D, et al. Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chinese Science Bulletin, 2006,51(18):2260~2267.[38] 生态学名词(2006).全国科学技术名词审定委员会.北京:科学出版社,2007.[39] 季劲钧,余琍.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究.大气科学,1999,23(4):439~448.[40] 季劲钧,黄玫,刘青.气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究.气象学报,2005,63(3):257~266.[41] 李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,2001,56(4):379~389.[42] 黄玫.中国陆地生态系统水、热通量和碳循环模拟研究.北京:中国科学院研究生院博士毕业论文,2006.[43] Lu J H, Ji J J. A simulation and mechanism analysis of long-term variations at land surface over arid/semi-arid area in north China. Journal of Geophysical Research Atmospheres, 2006,111:D09306.[44] Jones R G, Hassell D, Hudson D, et al. Workbook on generating high resolution climate change scenarios using PRECIS. Hadley Centre for Climate Prediction and Research, Met Office, UK. 2004.[45] 张时煌,彭公炳,黄玫.基于遥感与地理信息系统支持下的地表植被特征参数反演.气候与环境研究,2004,9(1):80~91.[46] 张时煌,彭公炳,黄玫.基于地理信息系统技术的土壤质地分类特征提取与数据融合.气候与环境研究,2004,9(1):65~79.[47] Ji J J. A climate-vegetation interaction model: Simulating physical and biological processes at the surface. Journal of Biogeography, 1995,22(2-3):445~451.[48] Dan L, Ji J J, Li Y P. Climatic and biological simulations in a two-way coupled atmosphere-biosphere model (CABM). Global Planet Change,2005,47(2-4):153~169.[49] 刘明光,韩渊丰,赵汝植.中国自然地理图集.北京:中国地图出版社,1998.[50] Box E O. Plant functional types and climate at the global scale. Journal of Vegetation Science,1996,7(3):309~320.[51] Scholze M, Knorr W, Arnell N, et al. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences,2006,103(35):13116~13120.[52] 於琍.中国自然生态系统对气候变化的脆弱性评价研究.北京:中国科学院研究生院博士毕业论文,2006.[53] Wu S H, Dai E F, Huang M, et al. Ecosystem vulnerability of China under B2 climate scenario in the 21st century. Chinese Science Bulletin,2007,52(10):1379~1386. |
[1] | 谢玉欢, 贺灿飞. 地方集群网络、信息溢出效应与中国ICT产品出口地理网络扩张[J]. 地理研究, 2021, 40(3): 689-707. |
[2] | 姚作林, 金凤君, 陈卓. 全球产业转移与GVC区域竞争——基于中国与中南半岛四国的分析[J]. 地理研究, 2021, 40(2): 326-342. |
[3] | 刘桂芳, 诸云强, 关瑞敏, 冯亚飞, 刘情, 夏梦琳, 张亚星, 卢鹤立. 大数据时代中国气候变化科学数据共享服务的发展现状与趋势分析[J]. 地理研究, 2021, 40(2): 571-582. |
[4] | 钱肖颖, 孙斌栋. 基于城际创业投资联系的中国城市网络结构和组织模式[J]. 地理研究, 2021, 40(2): 419-430. |
[5] | 周佳宁, 邹伟, 秦富仓. 等值化理念下中国城乡融合多维审视及影响因素[J]. 地理研究, 2020, 39(8): 1836-1851. |
[6] | 施帆, 张佳, 王琛. 中国城乡居民创业意愿的空间差异及其影响因素[J]. 地理研究, 2020, 39(8): 1852-1863. |
[7] | 刘媛媛, 王绍强, 王小博, 江东, N H Ravindranath, Atiq Rahman, Nyo Mar Htwe, Tartirose Vijitpan. 基于AHP_熵权法的孟印缅地区洪水灾害风险评估[J]. 地理研究, 2020, 39(8): 1892-1906. |
[8] | 李艳, 孙阳, 姚士谋. 基于财富中国500强企业的中国城市群城市网络联系分析[J]. 地理研究, 2020, 39(7): 1548-1564. |
[9] | 刘振, 戚伟, 齐宏纲, 刘盛和. 1990—2015年中国县市尺度人口收缩的演变特征及影响因素[J]. 地理研究, 2020, 39(7): 1565-1579. |
[10] | 张博胜, 杨子生. 中国城镇化的农村减贫及其空间溢出效应——基于省级面板数据的空间计量分析[J]. 地理研究, 2020, 39(7): 1592-1608. |
[11] | 宁志中, 王婷, 杨雪春. 2001年以来中国旅游景区时空格局演变与景区群形成[J]. 地理研究, 2020, 39(7): 1654-1666. |
[12] | 杨帆, 何凡能, 李美娇. 中国西部地区历史草地面积重建的方法——以甘宁青新区为例[J]. 地理研究, 2020, 39(7): 1667-1679. |
[13] | 马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6): 1233-1241. |
[14] | 李娜, 伍世代. FDI技术转化及制造业集聚创新空间响应[J]. 地理研究, 2020, 39(6): 1311-1328. |
[15] | 于婷婷, 左冰, 宋玉祥, 吴媛媛. 中国旅游业发展对区域经济效率的影响——基于中国283个地级市的实证证据[J]. 地理研究, 2020, 39(6): 1357-1369. |
|