地理研究 ›› 2011, Vol. 30 ›› Issue (6): 1055-1065.doi: 10.11821/yj2011060009

• 地球信息科学 • 上一篇    下一篇

元胞邻域对空间直观模拟结果的影响

冯永玖, 韩震   

  1. 上海海洋大学海洋科学学院,上海 201306
  • 收稿日期:2010-07-12 修回日期:2010-10-28 出版日期:2011-06-20 发布日期:2011-06-20
  • 作者简介:冯永玖(1981-),男,云南镇雄人,博士,讲师,主要从事遥感与GIS、地学信息模型研究。 E-mail: yjfeng@shou.edu.cn
  • 基金资助:

    上海市教委科研创新项目(11YZ154);上海高校选拔培养优秀青年教师科研专项基金(SSC09018);上海海洋大学校博士启动基金暨环境工程重点学科基金(A-2400-10-0134)

Impact of neighbor configurations on spatially-explicit modeling results

FENG Yong-jiu, HAN Zhen   

  1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306,China
  • Received:2010-07-12 Revised:2010-10-28 Online:2011-06-20 Published:2011-06-20

摘要: 作为一种空间直观模拟模型,地理元胞自动机(Geo-CA)能够模拟及预测城市扩展与土地利用情景。地理CA模拟中,元胞邻域及其空间构型会对转换规则的挖掘与空间直观模拟结果的可靠性产生显著影响,从模拟进度和精度、景观格局及运行效率等角度可以定量分析这种影响。以logistic回归CA模型为例,基于Von Neumann型和Moore 3/4/5型邻域,模拟了上海市宝山区1992~2008年土地利用变化过程,结果显示不同邻域产生的模拟结果在数量和空间形态方面呈现显著差异。分析表明:随模拟时间推进每次模拟新增的城市元胞呈衰减态势,且模拟精度也呈衰减态势,其中Moore 5×5邻域的模拟精度较高、模拟效果较好。在土地利用形态方面,各邻域产生的结果特点各异,总体看来Moore 3/5两种邻域产生的结果与实际分类较接近。对于模拟效率而言,元胞邻域范围越大则效率越低、稳定性也降低。研究表明,在土地利用空间直观模拟中,选择Moore3/5两种邻域类型比较适合。

关键词: 空间直观模拟, 元胞自动机, 元胞邻域, 景观分析, 土地利用情景

Abstract: As one of the spatially-explicit simulation models, geographical cellular automata (Geo-CA) are able to simulate and project the scenarios of urban expansion and land use patterns. In the geographic simulation, neighbor configurations remarkably impact the mining of transition rules and the accuracy of simulated results. It is recognized that the impact of neighbors on results could be quantitatively analyzed in terms of key factors such as iteration processing and accuracy of simulation, landscape pattern, and model performances. With logistic regression based CA model, and Von Neumann and three types Moore neighbors respectively, the land use changes of Baoshan District, Shanghai from 1992 to 2008, were simulated. It is demonstrated that there are remarkable differences on attribute and spatial patterns between the simulation results produced by different cell neighbors. The number of newly added cells and the simulation accuracies are decreasing with the simulating process. However, the results generated by Moore 5×5 neighbors have higher accuracy than the results generated by Von Neumann, Moore 3×3, and Moore 7×7 neighbors. As for the landscape pattern, results produced by Moore 3/5 neighbors match with actual pattern obtained from classification maps which is better than those by Von and Moore7 neighbors. Besides, the requirement of computation increases and model performances decreases with the increase of number of neighbors. This study showed that it is appropriate to simulate the land use changes with the Moore3/5 neighbor configurations.

Key words: spatially-explicit modeling, cellular automata, cell neighbors, landscape analysis, scenarios of land use