GEOGRAPHICAL RESEARCH ›› 2019, Vol. 38 ›› Issue (7): 1777-1790.doi: 10.11821/dlyj020181135
• Articles • Previous Articles Next Articles
Bo YU1(), Xu YANG1,2(
), Xiangli WU1, Yuanhe CAO3, Ying CAI1, Xuewei WANG1, Cheng ZHAO1
Received:
2018-11-16
Revised:
2019-04-24
Online:
2019-07-20
Published:
2019-07-12
Bo YU, Xu YANG, Xiangli WU, Yuanhe CAO, Ying CAI, Xuewei WANG, Cheng ZHAO. Spatial evolution and influencing factors of urban environmental pollution supervision level in China[J].GEOGRAPHICAL RESEARCH, 2019, 38(7): 1777-1790.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Definition and explanation of variables"
变量 | 说明 | 观测值 | 均值 | 标准差 | 最小值 | 最大值 | VIF |
---|---|---|---|---|---|---|---|
year | 环境污染监管的对应年份 | 815 | 2013 | 1.999 | 2010 | 2016 | — |
lnSOC | 中国城市污染监管的水平(对数形式) | 815 | 3.656 | 0.428 | 2.116 | 4.446 | — |
lnPOP | 城市市辖区的人口密度(对数形式) | 815 | 5.135 | 0.798 | 3.016 | 8.123 | 3.85 |
lnURB | 城市建成区土地面积(对数形式) | 815 | 5.061 | 0.797 | 3.091 | 7.375 | 4.54 |
lnGDP | 城市市区年末生产总值(对数形式) | 815 | 17.039 | 0.883 | 14.445 | 19.456 | 4.40 |
lnFDI | 外商直接投资占比(对数形式) | 815 | 5.677 | 0.982 | 0.000 | 6.673 | 1.49 |
lnINT | 城市电力强度指数(对数形式) | 815 | 0.967 | 1.428 | -4.241 | 3.634 | 1.09 |
SEC | 第二产业产值占比 | 815 | 0.508 | 0.098 | 0.193 | 0.900 | 3.84 |
TER | 第三产业产值占比 | 815 | 0.412 | 0.106 | 0.100 | 0.802 | 4.72 |
lnWAT | 城市年废水排放量(对数形式) | 815 | 8.888 | 0.940 | 4.477 | 11.295 | 2.17 |
lnSO2 | 城市年二氧化硫排放量(对数形式) | 815 | 10.885 | 0.866 | 6.188 | 13.258 | 1.61 |
lnSMO | 城市年烟尘粉尘排放量(对数形式) | 815 | 10.236 | 1.058 | 6.586 | 15.458 | 1.54 |
Tab. 2
The overall Moran's I index of pollution regulation in prefecture-level cities in China from 2010 to 2016"
年份 | Moran's I | 方差 | Z得分 | P值 |
---|---|---|---|---|
2010 | 0.5394 | 0.0135 | 4.7165 | 0.0000 |
2011 | 0.4332 | 0.0135 | 3.7963 | 0.0001 |
2012 | 0.4380 | 0.0139 | 3.7909 | 0.0002 |
2013 | 0.6008 | 0.0125 | 5.4398 | 0.0000 |
2014 | 0.5066 | 0.0126 | 4.5768 | 0.0000 |
2015 | 0.4206 | 0.0039 | 6.8075 | 0.0000 |
2016 | 0.4788 | 0.0040 | 7.7095 | 0.0000 |
Tab. 3
Spatial agglomeration mode of environmental pollution supervision level"
型区集聚 | 2010年 | 2013年 | 2016年 |
---|---|---|---|
HH(高高集聚) | 广州、惠州、佛山、中山、深圳、珠海 南通、扬州、南京、镇江、上海、嘉兴、宁波、绍兴、台州、福州、舟山、温州 | 福州、温州、台州、宁波、绍兴、杭州、嘉兴、上海、南通、苏州、无锡、南京、常州、扬州、湖州、盐城、连云港、威海、烟台、青岛、潍坊、淄博、济南、泰安、济宁 | 烟台、青岛、淄博、济南、泰安、日照、连云港、盐城、南通、上海、苏州、常州、嘉兴、湖州、杭州、绍兴、宁波、温州、台州、广州、佛山、中山、深圳、珠海、东莞 |
HL(高低集聚) | 沈阳 | ||
LH(低高集聚) | 韶关、湖州 | 汕头 | |
LL(低低集聚) | 赤峰 | 齐齐哈尔、大庆、抚顺、本溪、太原、临汾、玉溪、昆明、曲靖、攀枝花 | 牡丹江、金昌、兰州、太原、延安、临汾、张家界 |
Table 4
Regression results of rank-size double logarithm of pollution supervision from 2010 to 2016"
年份 | 120个地级市 | 前15个地级市 | |||||
---|---|---|---|---|---|---|---|
q | |q| | R2 | q | |q| | R2 | ||
2010 | -0.4200 | 0.4200 | 0.8108 | -0.1300 | 0.1300 | 0.9612 | |
2011 | -0.4453 | 0.4453 | 0.7840 | -0.1016 | 0.1016 | 0.8742 | |
2012 | -0.3704 | 0.3704 | 0.7741 | -0.0810 | 0.0810 | 0.9080 | |
2013 | -0.3784 | 0.3784 | 0.7646 | -0.1787 | 0.1787 | 0.9409 | |
2014 | -0.2859 | 0.2859 | 0.7513 | -0.0463 | 0.0463 | 0.8606 | |
2015 | -0.2428 | 0.2428 | 0.7799 | -0.0613 | 0.0613 | 0.9477 | |
2016 | -0.2439 | 0.2439 | 0.7952 | -0.0432 | 0.0432 | 0.9521 |
Tab. 5
Estimation results of GLS, SLM, SEM and SDM"
VARIABLES | GLS1 | GLS2 | GLS3 | SLM | SEM | SDM |
---|---|---|---|---|---|---|
Constant | 2.712*** | -0.142* | 0.847* | 0.406** | 0.613*** | 0.044*** |
lnWAT | 0.208*** | 0.051*** | 0.053** | 0.053* | 0.052* | |
lnSO2 | -0.101*** | -0.074*** | 0.018 | 0.020 | 0.036* | |
lnSMO | 0.020 | -0.009 | 0.013 | 0.012 | 0.014 | |
lnPOP | -0.002 | 0.006 | 0.081* | 0.083* | 0.095** | |
lnURB | -0.097*** | -0.094*** | -0.084** | -0.084** | -0.074* | |
lnGDP | 0.293*** | 0.263*** | -0.110 | -0.105 | 0.168*** | |
lnFDI | -0.005 | -0.010 | 0.025* | 0.026* | 0.026* | |
lnSEC | 0.330*** | 0.430*** | 0.157 | 0.149 | 0.168* | |
lnTER | 0.499*** | 0.548*** | -0.117 | -0.118 | -0.014 | |
lnINT | -0.024** | -0.022** | -0.041 | -0.001 | -0.006 | |
W × lnSOC | 0.585*** | |||||
W × lnWAT | -0.397* | |||||
W × lnSO2 | -0.282** | |||||
W × lnSMO | 0.204* | |||||
W × lnPOP | -0.094 | |||||
W × lnURB | 0.510* | |||||
W × lnGDP | -1.216* | |||||
W × lnFDI | -0.003 | |||||
W × lnSEC | 5.248** | |||||
W × lnTER | 2.826** | |||||
W × lnINT | 0.062 | |||||
λ&ρ | 0.888*** | 0.862*** | 0.862*** | |||
R-sq /Wald | 190.570 | 411.970 | 461.750 | 0.505 | 0.538 | 0.696 |
adj. R-sq | 0.501 | 0.529 | 0.673 | |||
Log-likelihood | -346.049 | -266.397 | -250.568 | 92.673 | 94.313 | 104.197 |
Observations | 763 | 763 | 763 | 763 | 763 | 763 |
Tab. 6
Total, direct and indirect effects of SDM results"
总效应 | 直接效应 | 间接效应 | ||||||
---|---|---|---|---|---|---|---|---|
系数 | P值 | 系数 | P值 | 系数 | P值 | |||
lnWAT | 0.0362 | 0.0312 | 1.0330 | 0.0051 | -0.5070 | 0.1045 | ||
lnSO2 | -0.5697 | 0.0500 | 0.0312 | 0.1321 | -0.6009 | 0.0392 | ||
lnSMO | 0.5012 | 0.1032 | 0.0196 | 0.2283 | 0.4906 | 0.1120 | ||
lnPOP | 0.0770 | 0.0416 | 0.0925 | 0.0264 | -0.0147 | 0.1831 | ||
lnURB | 1.0190 | 0.0564 | -0.0607 | 0.0198 | 1.0790 | 0.4764 | ||
lnGDP | -2.8750 | 0.0649 | 0.2101 | 0.0005 | -2.6640 | 0.0259 | ||
lnFDI | 0.0116 | 0.0417 | 0.0243 | 0.0471 | -0.0128 | 0.2477 | ||
lnINT | 0.1320 | 0.1035 | -0.0494 | 0.1098 | 0.1370 | 0.2133 | ||
lnSEC | 12.3900 | 0.0064 | 0.6360 | 0.0301 | 4.0880 | 0.0220 | ||
lnTER | 6.1410 | 0.2209 | 0.0719 | 0.3972 | 6.0690 | 0.1003 |
[1] |
Ke Shanzi, Edward Feser.Count on the growth pole strategy for regional economic growth? Spread-backwash effects in greater central china. Regional Studies, 2010, 44(9): 1131-1147.
doi: 10.1080/00343400903373601 |
[2] | 陆大道. 中速增长:中国经济的可持续发展. 地理科学, 2015, 35(10): 1207-1219. |
[Lu Dadao.Moderate-speed growth: Sustainable development of China's economy. Scientia Geographica Sinica, 2015, 35(10): 1207-1219.] | |
[3] | 傅强, 马青, Sodnomdargia Bayanjargal.地方政府竞争与环境规制: 基于区域开放的异质性研究. 中国人口·资源与环境, 2016, 26(3): 69-75. |
[Fu Qiang, Ma Qing, Sodnomdargia Bayanjargal.Local government competition and environmental Regulation: Based on regional openness. China Population, Resources and Environment, 2016, 26(3): 69-75.] | |
[4] |
Oates. The analysis of revenue sharing in a new approach to collective fiscal decisions. The Quarterly Journal of Economics, 1971, 85(3): 416-439.
doi: 10.2307/1885931 |
[5] |
Cai L, Cai W, Xiong Z, et al.Research on multi-players evolutionary game of environmental pollution in system dynamics model. Journal of Computational and Theoretical Nanoscience, 2016, 13(3): 1979-1984.
doi: 10.1166/jctn.2016.5143 |
[6] | Ran X, Yanrong W, Wenbin W, et al.Evolutionary game analysis for third-party governance of environmental pollution. Journal of Ambient Intelligence and Humanized Computing, 2018, (5): 1-12. |
[7] | 张淑平, 韩立建, 周伟奇, 等. 城市规模对大气污染物NO2和PM2. 5浓度的影响. 生态学报, 2016, 36(16): 5049-5057. |
[Zhang Shuping, Han Lijian, Zhou Weiqi, et al.Impact of urban population on concentrations of nitrogen dioxide ( NO2) and fine particles (PM2.5) in China. Acta Ecologica Sinica, 2016, 36(16): 5049-5057.] | |
[8] | 陆铭, 冯皓. 集聚与减排: 城市规模差距影响工业污染强度的经验研究. 世界经济, 2014, (7): 86-114. |
[Lu Ming, Feng Hao.Agglomeration and emission reduction: An empirical study on the impact of urban size gap on industrial pollution intensity. World Economy, 2014, (7): 86-114.] | |
[9] | 胡志强, 苗健铭, 苗长虹. 中国地市尺度工业污染的集聚特征与影响因素. 地理研究, 2016, 35(8): 1470-1482. |
[Hu Zhiqiang, Miao Jianming, Miao Changhong.Agglomeration characteristics of industrial pollution and their influencing factors on the scale of cities in China. Geographical Research, 2016, 35(8): 1470-1482.] | |
[10] | 张志斌, 潘晶, 达福文. 兰州城市人口空间结构演变格局及调控路径. 地理研究, 2012, 31(11): 2055-2068. |
[Zhang Zhibin, Pan Jing, Da Fuwen.Population spatial structure evolution pattern and regulating pathway in Lanzhou City. Geographical Research, 2012, 31(11): 2055-2068.] | |
[11] | 邵帅, 李欣, 曹建华, 等. 中国雾霾污染治理的经济政策选择: 基于空间溢出效应的视角. 经济研究, 2016, 51(9): 73-88. |
[Shao Shuai, Li Xin, Cao Jianhua, et al.China's economic policy choices for governing smog pollution based on spatial spillover effects. Economic Research, 2016, 51(9): 73-88.] | |
[12] | 王菲, 董锁成, 毛琦梁. 中国工业结构演变及其环境效应时空分异. 地理研究, 2014, 33(10): 1793-1806. |
[Wang Fei, Dong Suocheng, Mao Qiliang.Evolution of China's industrial structure and spatial-temporal differentiation in environmental effect. Geographical Research, 2014, 33(10): 1793-1806.] | |
[13] | 陈祖海, 雷家华. 中国环境污染变动的时空特征及其经济驱动因素. 地理研究, 2015, 34(11): 2165-2178. |
[Chen Zuhai, Lei Jiahua.The spatial-temporal characteristics and economic drivers of environmental pollution changes in China. Geographical Research, 2015, 20(5): 47-59.] | |
[14] | 刘满凤, 谢晗进. 中国省域经济集聚性与污染集聚性趋同研究. 经济地理, 2014, 34(4): 25-32. |
[Liu Manfeng, Xie Hanjin.The convergence research of economy aggregation and pollution aggregation among China's provinces. Economic Geography, 2014, 34(4): 25-32.] | |
[15] | 黄茂兴, 林寿富. 污染损害、环境管理与经济可持续增长: 基于五部门内生经济增长模型的分析. 经济研究, 2013, (12): 30-41. |
[Huang Maoxing, Lin Shoufu.Pollution damage, environmental management and sustainable economic growth: Based on the analysis of five-sector endogenous economic growth model. Economic Research, 2013, (12): 30-41.] | |
[16] | 姜磊, 周海峰, 柏玲. 外商直接投资对空气污染影响的空间异质性分析: 以中国150个城市空气质量指数(AQI)为例. 地理科学, 2018, 38(3): 351-360. |
[Jiang Lei, Zhou Haifeng, Bai Ling.Spatial heterogeneity analysis of impacts of foreign direct investment on air pollution: Empirical evidence from 150 cities in China based on AQI. Acta Geographica Sincia, 2018, 38(3): 351-360.] | |
[17] | 张宇, 蒋殿春. FDI、政府监管与中国水污染: 基于产业结构与技术进步分解指标的实证检验. 经济学(季刊), 2014, 13(2): 491-514. |
[Zhang Yu, Jiang Dianchun.FDI, government supervision and the water-pollution in China: An empirical test based on the decomposition of industrial structure and technological proress. China Economics Quarterly, 2014, 13(2): 491-514.] | |
[18] | 郑若娟. 中国重污染行业环境信息披露水平及其影响因素. 经济管理, 2013, (7): 35-46. |
[Zheng Ruojuan.A study on the quality and determinants of environmental information disclosure in Chinese heavily polluting industry. Economic Management, 2013, (7): 35-46.] | |
[19] | 郑思齐, 万广华, 孙伟增, 等. 公众诉求与城市环境治理. 管理世界, 2013, (6): 72-84. |
[Zheng Siqi, Wan Guanghua, Sun Weizeng, et al.Public appeal and urban environmental governance. Management World, 2013, (6): 72-84.] | |
[20] | 马丽. 基于LMDI的中国工业污染排放变化影响因素分析. 地理研究, 2016, 35(10): 1857-1868. |
[Ma Li.Decomposition of China's industrial environment pollution change based on LMDI. Geographical Research, 2016, 35(10): 1857-1868.] | |
[21] | 刘海猛, 石培基, 潘竟虎, 等. 中国城镇房价收入比时空演变的多尺度分析. 地理科学, 2015, 35(10): 1280-1287. |
[Liu Haimeng, Shi Peiji, Pan Jinghu, et al.Spatio-temporal evolution on housing price to income ratio of China by multiscale analysis. Scientia Geographica Sinica, 2015, 35(10): 1280-1287.] | |
[22] |
Pedro V.Testing for spatial error dependence in probit models. Letters in Spatial and Resource Sciences, 2013, 6(2): 91-101.
doi: 10.1007/s12076-012-0089-9 |
[23] | Anselin L, Bera A K, Florax R, et al.Simple diagnostic tests for spatial dependence. Regional Science & Urban Economics, 1993, 26(1): 77-104. |
[24] | Massidda C, Etzo I.The determinants of Italian domestic tourism: A panel data analysis. Tourism Management, 2012, 33(3): 0-610. |
[25] |
Elhorst J P.Specification and estimation of spatial panel data models. International Regional Science Review, 2003, 26(3): 244-268.
doi: 10.1177/0160017603253791 |
[26] | 戚伟, 刘盛和. 中国城市流动人口位序规模分布研究. 地理研究, 2015, 34(10): 1981-1993. |
[Qi Wei, Liu Shenghe.Research on the rank-size distribution rule of China's urban floating population. Geographical Research, 2015, 34(10): 1981-1993.] | |
[27] |
Polasek. Incorporating transportation network structure in spatial econometric models of commodity flows. Spatial Economic Analysis, 2008, 3(2): 225-245.
doi: 10.1080/17421770801996672 |
[28] | 戚伟, 刘盛和, 赵美风. “胡焕庸线”的稳定性及其两侧人口集疏模式差异. 地理学报, 2015, 70(4): 551-566. |
[Qi Wei, Liu Shenghe, Zhao Meifeng.Study on the stability of Hu Line and different spatial patterns of population growth on its both sides. Acta Geographica Sinica, 2015, 70(4): 551-566.] | |
[29] | 陈明星, 李扬, 龚颖华, 等. 胡焕庸线两侧的人口分布与城镇化格局趋势: 尝试回答李克强总理之问. 地理学报, 2016, 71(2): 179-193. |
[Chen Mingxing, Li Yang, Gong Yinghua, et al.The population distribution and trend of urbanization pattern on two sides of Hu Huanyong population line: A tentative response to Premier Li Keqiang. Acta Geographica Sinica, 2016, 71(2): 179-193.] |
|