首页  期刊介绍 期刊订阅 广告合作 联系我们 English
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行  |  下载排行  |  引用排行
1965-2014年北京西郊地区植物观赏期对气候变化的响应
高新月1,2,, 戴君虎1,, 张明庆2
1. 中国科学院地理科学与资源研究所,陆地表层格局与模拟重点实验室,北京 100101
2. 首都师范大学资源环境与旅游学院,北京 100048

作者简介:高新月(1993- ),女,山东滨州人,硕士,研究方向为资源开发、区域规划与评价。 E-mail: 442627833@qq.com

通讯作者:戴君虎(1968- ),男,陕西蓝田人,研究员,博士生导师,研究方向为植物地理学、植被生态学、物候学和全球变化影响等。E-mail: daijh@igsnrr.ac.cn
摘要

基于1965-2014年北京地区50种植物物候数据和同期日均温等气象资料,运用相关、回归分析法分析了北京地区绿叶观赏期、观花期和秋叶观赏期(开始日、结束日、时间长度)的变化趋势、变化形式及其对气候变化的响应情况。结果表明:① 北京西郊地区50种植物的绿叶观赏期为4月14日-10月15日,观赏期长度为163~219天。观花期为4月29日-5月17日,观花期长度为6~77天。秋叶观赏期为10月15日-11月14日,观赏期长度为16~41天。② 近50年来,北京西郊地区50种植物的3个观赏期都发生了一定程度的变化。绿叶观赏期开始日提前3.1天/10a,结束日推迟3.6天/10a,观赏期延长6.8天/10a。观花期开始日提前1.6天/10a,结束日提前0.5天/10a,观赏期延长1.2天/10a。秋叶观赏期开始日推迟3.6天/10a,结束日推迟1.1天/10a,观赏期缩短2.5天/10a。③ 绿叶观赏期延长主要表现为开始日提前,结束日推迟。观花期延长主要表现为开始日提前程度大于结束日提前程度,春花植物和夏花植物的观花期延长和缩短的表现形式基本一致。秋叶观赏期缩短主要表现为开始日推迟程度大于结束日推迟程度。④ 春季气温升高1 ℃,绿叶观赏期开始日提前3.9天、结束日推迟5.2天;观花期开始日提前3.4天,结束日提前1.9天。秋季气温升高1 ℃,秋叶观赏期开始日和结束日分别推迟5.2天和2.2天。⑤ 将不同观赏期重叠搭配可营造不同色彩和风格的植被景观,进而设计出不同特色的景观观赏主题。植物观赏期的变化可为园林景观创新设计提供有力参考,为植物观赏活动时间的安排提供科学依据。

关键词: 气候变化; 物候响应; 观赏期; 北京;
Responses of variations of plant ornamental period to climate change in the west suburbs of Beijing from 1965-2014
GAO Xinyue1,2,, DAI Junhu1,, ZHANG Mingqing2
1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
Abstract

Based on the phenological data of 50 plant species and the mean daily temperature data from 1965 to 2014, we analyzed the trend, the change patterns, and their response to climate change of ornamental period of leaf greenness, flowering, and leaf coloring and falling (beginning date, end date, and duration), respectively, by applying correlation and regression analysis methods. The results showed that: (1) For all the 50 plant species, the ornamental period of leaf greenness, flowering, and leaf coloring and falling was from April 14 to October 15, April 29 to May 17, October 15 to November 14, respectively. The duration ranged from 163 to 219 days for leaf greenness ornamental period, 6 to 77 days for flowering, 16 to 41 days for leaf coloring and falling. (2) During the study period, the beginning date exhibited an advancing trend of 3.1 days decade-1 for leaf greenness ornamental activities and 1.6 days decade-1 for flowering ornamental activities, respectively, but a delaying trend of 3.6 days decade-1 for leaf coloring and falling ornamental activities. The end date exhibited a delaying trend of 3.6 days decade-1 for leaf greenness ornamental activities and 1.1 days decade-1 for leaf coloring and falling ornamental activities, respectively, but advancing trend of 0.5 days decade-1 for flowering ornamental activities. The duration has extended by 6.8 days decade-1 for leaf greenness ornamental period and 1.2 days decade-1 for flowering ornamental periods, respectively, but shortened by 2.5 days decade-1 for leaf coloring and falling. (3) The extending leaf greenness ornamental period was caused by an earlier beginning date and a later end date. The extending flowering ornamental period was induced by a much earlier beginning date and a less earlier end date. The extending and shortening forms of flowering ornamental period of spring flowering plants were consistent with those of summer flowering plants. The shortening leaf coloring and falling ornamental period was induced by a much later beginning date and a less later end date. (4) The beginning date of ornamental periods of leaf greenness, the beginning and end dates of flowering ornamental period advanced by 3.9 days, 3.4 says and 1.9 days °C-1 in spring, respectively. However, the end date of ornamental period of leaf greenness delayed by 5.2 days °C-1 in spring. The beginning and end dates of ornamental period of leaf coloring and leaf falling delayed by 5.2 days and 2.2 days 1°C-1 in autumn. (5) By combining different phenophases, we identified landscape patterns with different colors and styles, and designed different landscape themes accordingly. Therefore, the study of changes of plant phenology provides a reference for both the innovative design of landscape and the arrangement of plant ornamental vacation.

Keyword: climate change; phenological response; plant ornamental vacation; Beijing;
1 引言

近年来,以植物观赏为主题的生态休闲旅游产业迅速发展起来[1],世界各地依托当地植物资源接连举办起了各式各样的植物观赏节[2],如日本的樱花节、保加利亚的玫瑰节,不仅吸引了众多游客参与,经济效益可观,而且极大丰富了当地居民的文化生活。

花和叶是植物生长发育的重要器官,其多样的形态和色彩具有很高的观赏价值,因而植物观赏节主要以观赏花和叶为主[3,4]。近年来,随着全球变暖[5],世界各地植物春季的花、叶物候期都发生了一定程度的变化。北美和欧洲地区的展叶期较过去几十年显著提前[6,7,8,9,10],国内研究也表现出同样的变化趋势,如1990-2007年间,北京地区48种植物的始花期比1963-1989年提前了5.4天[11],1978-2007年贵阳地区植物的展叶始期和始花期也均呈现出提前趋势[12]。另外,世界各地的秋季叶变色期也发生了变化。近几十年来,欧洲地区植物秋季叶变色始期普遍呈现推迟趋势[13],1990-2009年中国东部温带地区蒲公英(Taraxacum mongolicum)的叶变色期[14]和1980-2005年东北地区木本植物的枯黄初期也均有所推迟[15]。植物物候期的变动使得植物的各个生长发育期长度发生了变化。世界各地植物生长季长度普遍延长,1981-1999年间,欧亚地区和北美地区植物生长季分别延长了18天和12天[16]。花期长度的变化在不同地区有所不同,我国东北南部、华中和华东等地区植物的花期长度主要呈缩短趋势,而东北地区北部、华北地区、西南地区和华南地区南部的植物花期长度主要呈延长趋势[17]

植物物候期的变化与植被季节性景观的形成有密切联系,植物物候学与旅游学结合的研究也逐渐得到人们的重视。陈效逑等首次利用植物物候期频率分布型法将北京小西山山前一带的物候季节划分为12个季段,并描述了各个季段的景观特征[18]。杨国栋等对北京植物园主要木本植物的物候相组合类型进行研究,按照不同的累积频率值将植物的展叶、开花、秋叶、落叶的早中晚期进行划分,并设计了不同的时间搭配组合方式[19]。这些研究为园林的植被景观规划提供了科学依据,但它们只关注了植物物候相在静态上的搭配组合对植被景观观赏性的影响,却忽略了气候变化背景下的物候期的动态变化对植被景观观赏效果的影响。

北京西郊地处华北暖温带,植物资源极其丰富,季相变化明显。另外,它还存有以“三山五园”[20]为中心的皇家园林集群,是我国著名的风景名胜之区,每年都吸引众多游客前来。只有将此处的历史人文建筑景观与植被景观合理搭配才能使游客得到更好的旅游体验,增加旅游经济效益。

本文物候数据来自“中国物候观测网”在颐和园的观测,基本反映北京西郊地区自然植被景观的变化。本文利用上述物候数据对西郊地区的植被观赏期进行划分,并分析各个观赏期对气候变化的响应特征。研究结果可用于指导园林植被景观规划设计,为旅游管理部门制定合理的旅游活动方案和游客合理安排植物观赏活动时间提供参考依据。同时,本文作为物候学与旅游学相结合的研究,对指导旅游地理的实践活动也有帮助。

2 研究方法与数据来源
2.1 数据来源

本文中北京植物物候数据取自“中国物候观测网(China Phenological Observation Network,CPON)”在颐和园的观测,包括1965-2014年的60种植物的展叶始期、始花期、末花期、叶变色始期和落叶末期。各物候期的观测均严格按照《中国物候观测方法》[21]进行。根据工作需要,筛选出观测年时间超过15年,且时间序列较完整的观测序列,最终研究对象包括50个木本植物物种(表1)。与物候期对应年份的北京站点日均温数据来自于中国气象数据网(http://data.cma.cn)。

表1 研究选用的全部观测植物概况 Tab. 1 Summary of the observed species in this study
2.2 研究方法

2.2.1 植物观赏期的划分 北方地区一年四季植被景观有不同的观赏侧重,春季赏繁花似锦,夏季看绿树成荫,秋季观叶色缤纷。根据这些观赏特点,本文利用植物物候相组合法[19],基于物候相组合特征对木本植物的物候相进行划分,并确定其持续的时间,将植物的展叶始期、始花期、末花期、叶变色始期、落叶末期进行不同的搭配组合,划分出绿叶观赏期、观花期、秋叶观赏期这三个观赏期。绿叶观赏期为展叶始期—叶变色始期,观花期为始花期—末花期,秋叶观赏期为叶变色始期—落叶末期。

2.2.2 植物观赏期的变化特征及变化形式 利用50种植物各观赏期与年份的线性回归分析,计算1965-2014年50种植物的各个观赏期的开始日期(起始物候期)、结束日期(终止物候期)和时间长度的变化趋势。

观赏期长度由观赏期的开始日和结束日共同决定,观赏期长度的变化也受到开始日和结束日变化的影响。根据开始日和结束日的变化特点,观赏期长度的延长和缩短均有3种表现形式。观赏期延长的3种表现形式为:① 开始日和结束日都提前,但开始日的提前趋势更大;② 开始日提前,结束日推迟;③ 开始日和结束日都推迟,但结束日的推迟趋势更大。对应的,观赏期缩短的3种表现形式为:① 开始日和结束日都推迟,但开始日的推迟趋势更大;② 开始日推迟,结束日提前;③ 开始日和结束日都提前,但结束日的提前趋势更大。依据上述分类,对各观赏期的长度变化形式进行分析。

2.2.3 植物观赏期与气候要素的关系 气温是影响植物物候变化的最主要的气候要素[22],本文主要研究观赏期与气温的关系。首先需要确定对观赏期的起、止物候期影响最大的时段。多数研究表明,植物物候期主要受到物候期发生前一段时间的气候因子的影响[22]。本文利用最优时段分析法研究各观赏期的起、止物候期与气温的关系。具体方法为:定义最优时段

OP=[BP, EP] (1)

式中:BP为最优时段的起始日期;EP为最优时段的终止日期。

对每种植物,以多年平均物候期(EP)为结束日,以1天为步长,计算每个[EP-i,EP]时段(i=1, 2, …, 365)的平均气温与物候期的相关系数,将相关系数绝对值最大的那一时段作为影响此物候期的最优时段。物候期与最优时段的平均气温的回归系数可作为衡量气温对物候期的影响程度的指标。

3 结果分析
3.1 北京西郊地区植被观赏期及变化特征

3.1.1 绿叶观赏期及其变化 绿叶观赏期以展叶始期为开始日,以叶变色始期为结束日。西郊地区50种植物绿叶观赏期的开始日为4月1日(旱柳)-5月4日(合欢),平均开始日为4月14日。结束日为9月30日(白蜡)-11月9日(龙爪槐、迎春),平均结束日为10月15日。观赏期长度为163~219天(图1a),最短的是木槿,最长的是迎春,大多数植物(54%)的观赏期为180~200天。

图1 观赏期长度的频率分布 Fig. 1 Frequency distribution of the duration of plant ornamental period

近50年来,北京西郊地区50种植物的绿叶观赏期发生了一定程度的变化。对开始日来说,48种植物(96%)提前(图2a),平均提前3.3天/10a,45种植物表现显著(P<0.05)。2种植物(太平花和木槿)推迟,平均推迟1.5天/10a,无植物显著。对结束日来说,49种植物(98%)推迟(图2b),平均推迟3.9天/10a,38种植物显著。太平花的结束日有所提前,但不显著。对观赏期长度而言,绝大多数植物(98%)有所延长(图2c),平均延长7天/10a,86%的植物显著。太平花有所缩短(缩短4.9天/10a),但趋势不显著。对所有植物平均而言,绿叶观赏期开始日平均提前3.1天/10a,结束日平均推迟3.6天/10a,观赏期长度平均延长6.8天/10a。

图2 观赏期变化趋势的频率分布
虚线为变化趋势的平均值
Fig. 2 Frequency distribution of trends in plant ornamental period (beginning date, end date, and duration)

3.1.2 观花期及其变化 观花期以始花期为开始日,以末花期为结束日。观花期的开始日为3月17日(榆树)-7月16日(龙爪槐),其中,处于4月10日-30日的植物数量最多,50种植物的平均开始日为4月29日。结束日为3月29日(毛白杨)-9月25日(紫薇),同样的,结束日处于4月10日-30日的植物数量也最多,所有植物平均结束日为5月17日。观花期长度为6~77天(图1b),最短的是银杏和小叶杨,最长的是紫薇,大多数植物(56%)的长度为10~20天。

植物的观花期有所变化。对观花期开始日来说,47种植物(94%)提前(图2d),平均提前2天/10a,30种植物表现显著。碧桃、臭椿和木槿推迟,平均推迟4天/10a,仅碧桃和木槿显著。对结束日来说,42种植物(84%)提前(图2e),平均提前1.6天/10a,20种植物表现显著(P<0.05)。8种植物推迟,平均推迟5.1天/10a,4种植物显著。对观花期长度而言,36种植物(72%)的观花期延长(图2f),平均延长1.9天/10a,15种植物表现显著。14种植物缩短,平均缩短0.8天/10a,仅2种植物显著。对所有植物平均而言,观花期开始日提前1.6天/10a,结束日提前0.5天/10a,观花期长度延长1.2天/10a。

春季开花植物(始花期为3-5月)与夏季开花植物(始花期为6-8月)的观花期变化有所不同(图2g~图2l)。对于春季开花的42种植物,观花期的平均开始日和结束日均呈提前趋势,分别提前1.9天/10a和0.9天/10a,观花期长度平均延长1.1天/10a。8种夏季开花植物观花期的平均开始日有所提前,提前0.1天/10a,平均结束日有所推迟,推迟1.3天/10a,观花期长度平均延长1.5天/10a。

3.1.3 秋叶观赏期及其变化 秋叶观赏期以叶变色始期为开始日期,以落叶末期为结束日期。秋叶观赏期的开始日为9月30日(白蜡)-11月9日(迎春和龙爪槐),平均为10月15日。结束日为10月11日(木槿)-12月6日(绦柳),平均为11月14日。秋叶观赏期长度为16~41天(图1c),最短的是迎春,最长的是紫藤,长度在30~35天的植物数量最多。

植物的秋叶观赏期也发生了变化。对开始日来说,49种植物(98%)推迟(图2m),平均推迟3.9天/10a,38种植物表现显著,仅太平花提前,但不显著。对结束日来说,37种植物(74%)推迟,平均推迟1.6天/10a,19种植物显著。13种植物提前(图2n),平均提前0.6天/10a,无植物显著。对观赏期长度而言,44种植物观赏期长度缩短(图2o),平均缩短2.9天/10a,28种植物显著,6种植物延长,平均延长1.1天/10a,无植物显著。对所有植物平均而言,秋叶观赏期开始日推迟3.6天/10a,结束日推迟1.1天/10a,观赏期长度缩短2.5天/10a。

3.2 各观赏期长度变化形式

绿叶观赏期主要表现为延长趋势(表2),开始日提前,结束日推迟是其主要表现形式(96%)。观花期主要为延长趋势,开始日提前程度大于结束日提前程度是其最主要的表现形式(58%),开始日提前,结束日推迟是次要形式(12%)。开始日提前程度小于结束日提前程度是观花期缩短的主要形式。春花植物和夏花植物的观花期延长和缩短的表现形式基本一致(表3),延长主要表现为观花期开始日提前程度大于结束日提前程度和开始日提前,结束日推迟。缩短主要表现为开始日提前程度小于结束日提前程度。秋叶观赏期主要呈缩短趋势,其主要表现形式是开始日推迟程度大于结束日推迟程度(31%),其次是开始日推迟,结束日提前(13%)。秋叶观赏期延长的主要形式是开始日推迟程度小于结束日推迟程度。

表2 观赏期长度的变化形式 Tab. 2 The forms of change in plant ornamental period
表3 不同季节观花期长度的变化形式 Tab. 3 The forms of change in duration of flowering ornamental periods for different seasons
3.3 观赏期变化的气候原因

对绿叶观赏期来说,绿叶观赏期开始日主要受到其前49天的气温的影响。所有植物的开始日均与最优时段(对物候期影响最大的气温时段)的气温呈显著负相关(图3),即气温升高使开始日提前,所有植物开始日的平均气温敏感度为-3.9天/℃,即气温升高1℃,开始日提前3.9天。其中,核桃的气温敏感度最大(-5.5天/℃),太平花最小(-1.5天/℃)。绿叶观赏期结束日主要受到其前80天的气温的影响。48种植物(96%)的结束日与最优时段的气温呈正相关,即气温升高导致结束日推迟,平均推迟5.5天/℃,42种植物表现显著。板栗和旱柳的结束日与最优时段气温呈负相关,气温敏感度分别为-1.3天/℃和-0.5天/℃,两者表现均不显著。所有植物绿叶观赏期结束日的平均气温敏感度为5.2天/℃。

图3 绿叶观赏期的开始日、结束日与最优时段气温的回归系数频率分布
虚线为变化趋势的平均值
Fig. 3 Frequency distributions of regression slopes of beginning and end dates of leaf greenness ornamental period on preseason temperature

对观花期而言,50种植物观花期开始日的平均最优时段长度为53天。所有植物的开始日均与最优时段气温呈负相关关系(图4a、图4b),气温敏感度平均为-3.4天/℃,98%的植物表现显著,其中,槐树和龙爪槐的气温敏感度最大(均为-5.5天/℃),碧桃最小(-0.7天/℃)。观花期结束日的平均最优时段长度为61天。其中,41种植物(82%)的结束日与最优时段气温呈显著负相关,平均气温敏感度为-3.4天/℃,其余9种植物的结束日与最优时段气温呈正相关,平均气温敏感度为4.6天/℃,4种植物显著。对所有植物而言,观花期结束日的平均气温敏感度为-1.9天/℃。

图4 观花期的开始日、结束日与最优时段气温的回归系数频率分布
虚线为变化趋势的平均值
Fig. 4 Frequency distributions of regression slopes of beginning and end dates of flowering ornamental period on preseason temperature

春花植物和夏花植物的观花期对气温变化的响应有所不同(图4c~图4f)。对42种春花植物来说,观花期开始日的平均气温敏感度为-3.3天/℃,结束日为-2.5天/℃。相对于春花植物,8种夏花植物观花期开始日的气温敏感度更大,为-3.8天/℃,结束日更小,为0.9天/℃。

秋叶观赏期开始日的最优时段长度平均为80天。48种植物(96%)的开始日与最优时段气温呈正相关关系(图5),平均气温敏感度为5.5天/℃,42种植物表现显著。其中,石榴的敏感度最小(1天/℃),探春的敏感度最大(16.8天/℃)。板栗和旱柳的开始日与气温呈负相关,气温敏感度分别为-1.3天/℃和-0.5天/℃,表现均不显著。对所有植物而言,秋叶观赏期开始日的平均敏感度为5.2天/℃。秋叶观赏期结束日的平均最优时段长度为79天。45种植物(90%)的结束日与最优时段气温呈正相关关系,平均气温敏感度为2.5天/℃,31种植物显著。其余5种植物的结束日与气温呈负相关,平均气温敏感度为-1.3天/℃,无植物显著。所有植物秋叶观赏期结束日的平均气温敏感度为2.2天/℃。

图5 秋叶观赏期的开始日、结束日与最优时段气温的回归系数频率分布
虚线为变化趋势的平均值
Fig. 5 Frequency distributions of regression slopes of beginning and end dates of leaf coloring and falling ornamental period on preseason temperature

4 讨论

从观赏角度对北京西郊地区植被景观的物候期进行了划分,并对其变化特征及气候基础进行了研究。本文对各观赏期起、止物候期的研究结果表明,展叶始期、春季始花期和末花期均提前,叶变色始期和落叶末期均推迟,这与春季物候期提前、秋季物候期推迟的全球趋势[23]明显一致。对观赏期长度而言,绿叶观赏期长度有所延长,这与多数地区[24,25,26]植物生长季的起止日期和长度的变化特征一致。相反的,与牡丹江地区植物花期缩短的研究结论[27]不同,北京西郊地区的观花期以延长为主。与鲁西南木本植物叶变色持续期和落叶持续期均有所延长[28]的研究结论也不同,秋叶观赏期(叶变色始期—落叶末期)长度主要呈缩短趋势。这种差异与研究年份、研究物种、研究的物候期以及研究地区的不同气候条件均有关。此外,植物物候是植物对外界环境的响应的综合表现,除气温外,日照时数、降水量、云量、霜冻灾害等气候因子[29,30]以及种间竞争[31]等非气候因子也会对植物物候期产生影响,因此,在未来研究植物物候期对气候变化的响应机制时要综合考虑这些地理因子。

本文划分了绿叶观赏期、观花期和秋叶观赏期这3个观赏期,基本涵盖了春夏秋三个季节的主要植被景观。在园林造景时,可在不同季节对植物的不同观赏期进行重叠搭配和组合,并划分出不同的观赏时段,设计不同的景观观赏主题,营造风格迥异的植被色彩景观。另外,植物观赏期的变化对园林景观设计和植物观赏活动也有重要影响。在园林景观设计中,要充分利用不同植物观赏期变化的特点,创新设计植被景观。如在春、夏季,将观花期显著延长的不同种植物搭配种植,可在整体上延长植物的花卉观赏期;将观花期气温敏感度不同的植物混植,可有效延长或缩短不同植物观花期的前后时间间隔,创造出更丰富优美的植被景观;近年来,植物二次开花现象逐渐增多[32],合理利用植物的这种变化特点,还可以增加不同季节植物观赏的趣味性。在秋季,还可根据植物秋色叶植物叶变色的早晚及叶色特点营造不同的色彩景观,如北京香山黄栌的叶变色可先后呈现极具观赏性的三种景观——“五彩斑斓”“层林尽染”和“万叶飘丹”。总之,在不同时期要充分利用植物花、叶的观赏性及其组合特点,打造出兼具时间韵律感和空间层次感的植被景观。对植物观赏节而言,观赏期的变化会直接影响到其举办的时间[33],Wang等[34]研究表明,北京植物园和北京玉渊潭公园的管理者通常是根据前一年植物观赏节的举办日期来确定当年观赏节的开幕日期,这种管理者未能根据植物观赏期的变化对观赏节进行准确的调节的现象,会大大降低观赏景区的感知景观价值,这对植物观赏资源和经济投入都是一种浪费。此外,Wang等[35]研究还表明,对于以观赏特定植物为主的主题展,游客已经意识到要根据植物物候期的变化调整观赏时间,但是对于北京植物园和颐和园这类观赏植物种类丰富的园区来说,游客观赏时间的调节则并不准确,这种游客的观赏旅游时间与植物观赏期时间上的“错位”也使得视觉观赏体验大打折扣。总之,未来要充分发挥物候学理论在植物观赏旅游方面的应用,如加强植物物候期的变化以及人类的适应性研究、植物观赏性物候期预报模型的研究等,更好地指导人类的植物观赏旅游活动,增加社会和经济效益。

本文根据各季节内主要植被景观的特征划分了3个观赏期,但并未对观赏期内不同的观赏时段进行具体划分与研究,这与本文所用物候观测资料的完整性有关。不同个体对植物的审美取向存在较大差异,仅依照原来的物候观测标准进行观测已经跟不上现今以植物观赏为主题的旅游产业发展的趋势,因而未来还需要对植物的观赏性进行合理评估,针对具有观赏性的物候期制定出新的观测标准和观测方法,如对于秋季叶变色,可以根据变色叶数量的多少划分出不同的秋叶观赏期,以满足不同个体的审美需求,更科学地指导人类的植物观赏活动,促进旅游业的发展。

5 结论

本文揭示了1965-2014年北京西郊地区50种植物的绿叶观赏期、观花期和秋叶观赏期这3个观赏期(开始日、结束日和观赏期长度)的变化特征和变化形式,并分析了观赏期的气候基础。主要结论如下:

(1)北京西郊地区50种植物的绿叶观赏期为4月14日-10月15日,观赏期长度为163~219天。观花期为4月29日-5月17日,观花期长度为6~77天。秋叶观赏期为10月15日-11月14日,观赏期长度为16~41天。

(2)近50年来,北京西郊地区50种植物的3个观赏期都发生了一定程度的变化。绿叶观赏期开始日提前3.1天/10a,结束日推迟3.6天/10a,观赏期延长6.8天/10a。观花期开始日提前1.6天/10a,结束日提前0.5天/10a,观赏期延长1.2天/10a。秋叶观赏期开始日推迟3.6天/10a,结束日推迟1.1天/10a,观赏期缩短2.5天/10a。

(3)绿叶观赏期延长主要表现为开始日提前,结束日推迟。观花期延长主要表现为开始日提前程度大于结束日提前程度,春花植物和夏花植物的观花期延长和缩短的表现形式基本一致。秋叶观赏期缩短主要表现为开始日推迟程度大于结束日推迟程度。

(4)春季气温升高1℃,绿叶观赏期开始日提前3.9天、结束日推迟5.2天;观花期开始日提前3.4天,结束日提前1.9天。秋季气温升高1℃,秋叶观赏期开始日和结束日分别推迟5.2天和2.2天。

(5)将不同观赏期的重叠搭配可营造不同色彩和风格的植被景观,进而设计出不同特色的景观观赏主题。植物观赏期的变化可为园林景观创新设计提供有力参考,为植物观赏活动时间的安排提供科学依据。

The authors have declared that no competing interests exist.

Reference
[1] 吴安湘. 旅游景区观赏植物信息平台的构建及其应用: 以桂林市园林植物园为例. 中南林业科技大学学报: 社会科学版, 2013, 7(1): 14-16.
观赏植物是一类重要的旅游资源,不仅有较高的观赏价值,还具有较 强的知识性和趣味性,努力向广大游客传播观赏植物知识是当今社会旅游业发展的必然方向.以桂林市园林植物园为例,通过Flash和Photoshop等软 件开发了“旅游景区观赏植物科普信息平台”.平台包含了桂林市园林植物园中的园林植物的图片和文字信息,并通过触摸式电脑、光盘和网络三位一体多介质加以 承载.该信息平台界面美观,操作简便,内容丰富,若应用到旅游景区可带来一定的经济效益和社会效益.
[本文引用:1]
[Wu Anxiang.The construction and application of ornamental information platform in tourist attractions: A case study of the Guilin botanical garden botanical garden. Journal of Central South University of Forestry & Technology: Social Sciences, 2013, 7(1): 14-16.]
[2] 马丽, 方修琦. 近20年气候变暖对北京时令旅游的影响: 以北京市植物园桃花节为例. 地球科学进展, 2006, 21(3): 313-319.
<p>北京植物园桃花节是赏花专题时令旅游的典型代表,以近20年植物园桃花节的起讫时间、持续时间及相关气温、物候期等数据为依据,探讨了气候变暖对时令旅游的影响。结果表明:1994年前后桃花节开始日期存在着显著的均值差异,后一时段比前一时段约提前6天,植物园桃花节的开始日期在总体上响应了以山桃始花为代表的北京春季物候提前的变化趋势。同时,桃花节开始日期与上年山桃始花日期、上年年均温度存在显著相关性,反映人们对桃花节的决策是参照上一年的物候现象做出的,相对于气候年际波动存在1年的滞后。桃花节结束日期受人为因素影响较大,但总的来说气候变暖有利于桃花节持续日数的延长。此外,桃花节响应气候变化的滞后性,使得气候波动容易引起时令旅游产品的不稳定,不利于时令旅游的经济效益和社会效益。</p>
[本文引用:1]
[Ma Li, Fang Xiuqi.Effects of global warming on seasonal tourism for the last 20 years in Beijing: A case study on the peach flower stanza of Beijing botannical garden. Advances in Earth Science, 2006, 21(3): 313-319.]
[3] 兰思仁. 福建省野生观赏植物资源调查与观花植物的观赏特性评价. 中国园林, 2010, 26(12): 63-67.
首次对福建省野生观赏植物资源进行了系统全面的调查;根据调查结果,统计到具有观赏价值的野生植物1506种;并依据野生观赏植物的形态特性和观赏部位将观赏植物分为观花植物、观叶植物、观果植物、观姿植物、观赏藤蔓、观赏竹类、观赏蕨类、水生观赏植物和地被植物9类;采用心理物理学法,对所调查的765种野生观花植物进行观赏特性评价,从中选取142种具有较高园林开发价值和潜力的植物。
DOI:10.3969/j.issn.1000-6664.2010.12.018      [本文引用:1]
[Lan Siren.Study on the resources of wild ornamental plants and evaluation of ornamental characters for flower plants in Fujian province. Chinese Landscape Architecture, 2010, 26(12): 63-67.]
[4] 李淑娟, 刘雅莉. 西安主要季色叶植物观赏特征及物候图谱研究初报. 西北林学院学报, 2013, 28(2): 42-47.
在对西安园林植物进行23a的观赏物候期及5a的观赏物候相特征观察的基础上,通过对资料的统计分析和整理,绘制了西安地区30种主要季色叶植物的观赏物候期图谱,并描述了它们各观赏物候相特征。通过图谱这种直观的形式并结合特征描述,较为全面地介绍了这30种季色叶植物在西安的观赏物候发生时期及其性状特征,以及各种植物观赏相出现时期之间的重叠、相随及匹配关系。观察结果同时显示,西安地区季色叶植物资源丰富,约有100种,但园林中广泛应用的种类不及1/2;在表现最为突出的30种季色叶植物中,60%为春季兼秋季色叶型,40%为单秋季色叶型。
DOI:10.3969/j.issn.1001-7461.2013.02.08      [本文引用:1]
[Li Shujuan, Liu Yali.Ornamental characteristic and phenograms of plant leaf color in the main season in Xi'an. Journal of Northwest Forestry University, 2013, 28(2): 42-47.]
[5] IPCC. Summary for Policymakers of Climate Change 2014: The Physical Science Basis Contribution of Working GroupI to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.
[本文引用:1]
[6] Penuelas J, Filella I, Comas P.Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 2002, 8(6): 531-544.
The available data on climate over the past century indicate that the earth is warming. Important biological effects, including changes of plant and animal life cycle events, have already been reported. However, evidence of such effects is still scarce and has been mostly limited to northern latitudes. Here we provide the first long-term (1952 2000) evidence of altered life cycles for some of the most abundant Mediterranean plants and birds, and one butterfly species. Average annual temperatures in the study area (Cardedeu, NE Spain) have increased by 1.4 C over the observation period while precipitation remained unchanged. A conservative linear treatment of the data shows that leaves unfold on average 16 days earlier, leaves fall on average 13 days later, and plants flower on average 6 days earlier than in 1952. Fruiting occurs on average 9 days earlier than in 1974. Butterflies appear 11 days earlier, but spring migratory birds arrive 15 days later than in 1952. The stronger changes both in temperature and in phenophases timing occurred in the last 25 years. There are no significant relationships among changes in phenophases and the average date for each phenophase and species. There are not either significant differences among species with different Raunkiaer life-forms or different origin (native, exotic or agricultural). However, there is a wide range of phenological alterations among the different species, which may alter their competitive ability, and thus, their ecology and conservation, and the structure and functioning of ecosystems. Moreover, the lengthening of plant growing season in this and other northern hemisphere regions may contribute to a global increase in biospheric activity.
DOI:10.1046/j.1365-2486.2002.00489.x      [本文引用:1]
[7] Menzel A.Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 2003, 57(3): 243-263.
DOI:10.1023/A:1022880418362      [本文引用:1]
[8] Ghislain P, Shaun Q, Nicolas D, et al.Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Global Change Biology, 2005, 11(12): 2164-2176.
DOI:10.1111/gcb.2005.11.issue-12      [本文引用:1]
[9] Andrewd R, Ameyschenck B, Elleng D, et al.Phenology of a northern hardwood forest canopy. Global Change Biology, 2006, 12(7): 1174-1188.
While commonplace in other parts of the world, long-term and ongoing observations of the phenology of native tree species are rare in North America. We use 14 years of field survey data from the Hubbard Brook Experimental Forest to fit simple models of canopy phenology for three northern hardwood species, sugar maple ( Acer saccharum ), American beech ( Fagus grandifolia ), and yellow birch ( Betula alleghaniensis ). These models are then run with historical meteorological data to investigate potential climate change effects on phenology. Development and senescence are quantified using an index that ranges from 0 (dormant, no leaves) to 4 (full, green canopy). Sugar maple is the first species to leaf out in the spring, whereas American beech is the last species to drop its leaves in the fall. Across an elevational range from 250 to 825 m ASL, the onset of spring is delayed by 2.7卤0.4 days for every 100 m increase in elevation, which is in reasonable agreement with Hopkin's law. More than 90% of the variation in spring canopy development, and just slightly less than 90% of the variation in autumn canopy senescence, is accounted for by a logistic model based on accumulated degree-days. However, degree-day based models fit to Hubbard Brook data appear to overestimate the rate at which spring development occurs at the more southerly Harvard Forest. Autumn senescence at the Harvard Forest can be predicted with reasonable accuracy in sugar maple but not American beech. Retrospective modeling using five decades (1957 2004) of Hubbard Brook daily mean temperature data suggests significant trends ( P 0.05) towards an earlier spring (e.g. sugar maple, rate of change=0.18 days earlier/yr), consistent with other studies documenting measurable climate change effects on the onset of spring in both North America and Europe. Our results also suggest that green canopy duration has increased by about 10 days (e.g. sugar maple, rate of change=0.21 days longer/yr) over the period of study.
DOI:10.1111/j.1365-2486.2006.01164.x      [本文引用:1]
[10] Ahas R, Aasa A, Menzel A, et al.Changes in European spring phenology. International Journal of Climatology, 2002, 22(14): 1727-1738.
The European phyto-phenological database of the EU 5th Framework project POSITIVE facilitated an examination of the rate and spatial pattern of changes in spring phenology across Europe. This database was collected, evaluated and composed from different national databases of Eastern and Western Europe covering the time period 1951-1998. Results show that spring phases have advanced four weeks in Western and Central Europe, and have been delayed up to two weeks in Eastern Europe. Western European spring starts earlier because of the intensive flow of warmer Atlantic air masses; the Eastern part of Europe has a different phenological rhythm and trends, that can be explained by the influence of the Siberian high. The highest rate of significant (p < 0.05) phenological change (-0.3 to -0.4 days per year) occurs in the Western Europe and Baltic Sea regions for early spring phases of hazel and colts-foot. Spring phases of birch, apple and lilac, and summer phases, such as the flowering of linden, tend to occur earlier with an average rate of -0.1 to 0.3 days per year.
DOI:10.1002/joc.818      [本文引用:1]
[11] Bai J, Ge Q S, Dai J H.The response of first flowering dates to abrupt climate change in Beijing. Advances in Atmospheric Sciences, 2011, 28(3): 564-572.
Phenological data on the First Flowering Date (FFD) of woody plants in Beijing from 1963–2007 are analyzed. The correlation between each species’ yearly FFD and the mean monthly temperatures for every year over a 45-year period is used to identify the month in which temperature has the most effect on FFD. Through further analysis, the FFDs of 48 woody plant species are shown to have advanced an average of 5.4 days from 1990–2007 compared to 1963–1989. The results indicate that 70.8% of species flowered significantly earlier (7 days on average) during the period 1990–2007, while only one species (2.1%) flowered significantly later. Moreover, the responses of FFD to climate change are shown to be different in two climatic stages, defined by an abrupt climate change point. Thirty-three species which first flower in March and April are sensitive to temperature are examined. The correlation coefficients between FFD and temperature for 20 species during the latter period (1990–2007) are shown to be larger than during the former period (1963–1989), with a difference of around 610.87 days per 1°C on average. The paper concludes that with the warming of climate, the linear trend of FFD variation, as well as its responsiveness to temperature, became more prominent during 1990–2007 than 1963–1989. The data analyzed in this study present a strong biological indicator of climate change in Beijing, and provide further confirmation of previous results from regional and local studies across the Northern Hemisphere. Phenophase variations indicate that the climate is changing rapidly.
DOI:10.1007/s00376-010-9219-8      [本文引用:1]
[12] 白洁, 葛全胜, 戴君虎. 贵阳木本植物物候对气候变化的响应. 地理研究, 2009, 28(6): 1606-1614.
[本文引用:1]
[Bai Jie, Ge Quansheng, Dai Junhu.Response of woody plant phenophases to climate change for recent 30 years in Guiyang. Geographical Research, 2009, 28(6): 1606-1614.]
[13] Menzel A, Fabian P.Growing season extended in Europe. Nature, 1999, 397(6721): 659.
Changes in phenology (seasonal plant and animal activity driven by environmental factors) from year to year may be a sensitive and easily observable indicator of changes in the biosphere. We have analysed data from more than 30 years of observation in Europe, and found that spring events, such as leaf unfolding, have advanced by 6 days, whereas autumn events, such as leaf colouring, have been delayed by 4.8 days. This means that the average annual growing season has lengthened by 10.8 days since the early 1960s. These shifts can be attributed to changes in air temperature.
DOI:10.1038/17709      [本文引用:1]
[14] Chen X Q, Tian Y H, Xu L.Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone. International Journal of Biometeorology, 2015, 59(10): 1437-1452.
Abstract Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.102days per decade, while the mean growing season end date was significantly delayed at a rate of 3.102days per decade. The mean growing season length was significantly prolonged at a rate of 5.102days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 102°C increase in regional mean spring temperature results in an advancement of 2.102days in regional mean growing season beginning date, and a 102°C increase in regional mean autumn temperature causes a delay of 2.302days in regional mean growing season end date. A 102°C increase in regional annual mean temperature induces an extension of 8.702days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 102°C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 102°C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.
DOI:10.1007/s00484-015-0955-4      PMID:25627826      [本文引用:1]
[15] 李荣平, 周广胜. 1980-2005年中国东北木本植物物候特征及其对气温的响应. 生态学杂志, 2010, 29(12): 2317-2326.
<p>基于25年物候观测数据,分析了东北地区木本植物物候的时空变化特征,阐述了近25年来东北地区气候变暖对植物物候的影响,结果表明:1980&mdash;2005年,东北地区木本植物展叶初期主要呈提前趋势,提前幅度为0.23 d&middot;a<sup>-1</sup>,枯黄初期主要表现为推后趋势,平均推后0.19 d&middot;a<sup>-1</sup>,生长季延长,平均延长幅度为0.30 d&middot;a<sup>-1</sup>;东北地区广泛分布的5种木本植物(旱柳、杏树、小叶杨、榆树和紫丁香)物候在地理空间上存在显著差异:纬度平均每增加1&deg;,展叶初期推后3 d,枯黄初期提前1.35 d,生长季长度缩短4.41 d;东北地区植物展叶初期与2、3、4月的气温显著负相关(<em>P</em>&lt;0.05),其中,4月气温对植物展叶提前的影响最大,展叶提前趋势平均为2.35 d&middot;℃<sup>-1</sup>;2月气温的影响最小,平均趋势为1.18d&middot;℃<sup>-1</sup>。</p>
[本文引用:1]
[Li Rongping, Zhou Guangsheng.Responses of woody plants phenology to air temperature in northeast China in 1980-2005. Chinese Journal of Ecology, 2010, 29(12): 2317-2326.]
[16] Kaufmann R K, Zhou L, Tucker C J, et al. Reply to Comment on "Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999" by J R Ahlbeck. Journal of Geophysical Research Atmospheres, 2002, 107(D11): ACL7-1-ACL7-3.
The northern high latitudes have warmed by about 0.800°C since the early 1970s, but not all areas have warmed uniformly [Hansen et al., 1999]. There is warming in most of Eurasia, but the warming rate in the United States is smaller than in most of the world, and a slight cooling is observed in the eastern United States over the past 50 years. These changes beg the question, can we detect the biotic response to temperature changes? Here we present results from analyses of a recently developed satellite-sensed normalized difference vegetation index (NDVI) data set for the period July 1981 to December 1999: (1) About 61% of the total vegetated area between 4000°N and 7000°N in Eurasia shows a persistent increase in growing season NDVI over a broad contiguous swath of land from central Europe through Siberia to the Aldan plateau, where almost 58% (7.30103106 km2) is forests and woodlands; North America, in comparison, shows a fragmented pattern of change in smaller areas notable only in the forests of the southeast and grasslands of the upper Midwest, (2) A larger increase in growing season NDVI magnitude (12% versus 8%) and a longer active growing season (18 versus 12 days) brought about by an early spring and delayed autumn are observed in Eurasia relative to North America, (3) NDVI decreases are observed in parts of Alaska, boreal Canada, and northeastern Asia, possibly due to temperature-induced drought as these regions experienced pronounced warming without a concurrent increase in rainfall [Barber et al., 2000]. We argue that these changes in NDVI reflect changes in biological activity. Statistical analyses indicate that there is a statistically meaningful relation between changes in NDVI and land surface temperature for vegetated areas between 4000°N and 7000°N. That is, the temporal changes and continental differences in NDVI are consistent with ground-based measurements of temperature, an important determinant of biological activity. Together, these results suggest a photosynthetically vigorous Eurasia relative to North America during the past 2 decades, possibly driven by temperature and precipitation patterns. Our results are in broad agreement with a recent comparative analysis of 1980s and 1990s boreal and temperate forest inventory data [United Nations, 2000].
DOI:10.1029/2000JD000115      [本文引用:1]
[17] 陶泽兴, 仲舒颖, 葛全胜, . 1963-2012年中国主要木本植物花期长度时空变化. 地理学报, 2017, 72(1): 53-63.
花期物候变化研究对赏花活动安排、园林景观布置和致敏花粉防治等具有重要意义。现有研究对始花期与盛花期的变化趋势已有较为深刻的认识,但很少有研究辨识了花期长度的时空变化。本文基于"中国物候观测网"观测数据,统计了1963-2012年中国42个站点23种广布木本植物的花期长度变化趋势,分析了花期长度变化的时空格局、种间差异和变化形式。主要结论为:所有的259条花期长度时间序列中,61.39%的序列呈延长趋势,其中显著延长的占21.24%(P0.05)。灌木花期的延长趋势比乔木更加显著。东北地区南部、华中和华东地区的多数站点花期长度主要呈缩短趋势。在东北地区北部、华北、西南和华南地区,大多数物种的花期长度呈延长趋势。花期长度变化趋势在20°N~22°N间最大(0.94 d/a)。西部地区(87°E~112°E)的花期长度变化趋势(平均0.28 d/a)高于东部地区(平均0.05 d/a)。花期长度的总体变化可分为3个阶段:1963-1980年(偏短)、1981-1997年(与多年平均值接近)和2001-2012年(偏长),但不同物种的花期长度变化存在显著差异。在花期长度延长的序列中,43.39%是因开花始期提前程度大于开花末期;在花期长度缩短的序列中,62.00%是因开花始期提前程度小于开花末期。
DOI:10.11821/dlxb201701005      [本文引用:1]
[Tao Zexing, Zhong Shuying, Ge Quansheng, et al.Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012. Acta Geographica Sinica, 2017, 72(1): 53-63.]
[18] 陈效逑, 曹志萍. 植物物候期的频率分布型及其在季节划分中的应用. 地理科学, 1999, 19(1): 21-27.
<p>在前人物候季节划分研究的基础上,提出了划分自然景观季节的物候频率分布型法,并利用北京小西山山前一带物候历中的资料,将当地的物候季节划分为12个季段。划分结果表明,每个季节阶段都具有典型的植物物候形态组合与色彩组合,独特的季相特征,并且与气温和降水的季节分配状况相吻合。本方法与以往的物候季节划分方法相比,具有划分指标定量且综合、划分季段详细、季节的内涵丰富、适用区域范围广阔等特点。</p>
DOI:10.1088/0256-307X/16/12/025      [本文引用:1]
[Chen Xiaoqiu, Cao Zhiping.Frequency distribution pattern of plant phenphases and its application to seaso determination. Acta Geographica Sinica, 1999, 19(1): 21-27.]
[19] 杨国栋, 陈效逑. 木本植物物候相组合分类研究: 以北京市植物园栽培树种为例. 林业科学, 2000, 36(2): 39-46.
<p>木本植物物候相的更替鲜明地显示出自然景观外貌及其色彩的季节变化,成为园林设计中不容忽视的重要因素。在植物造景工作中,恰当地运用木本植物的物候相变化及其组合特征进行配植,可以增添空间构图的韵律,显示时间演变的节奏,协调不同时段之间景观季相的匹配关系,从而表现景观的时间与空间之美。为此,本文利用多年的物候观测资料,依据木本植物的展叶、开花、叶变色和落叶等物候相出现日期的早晚,对北京市植物园的70余种木本植物进行了物候相组合分类的研究。这一工作为比较客观地评价一个地区各种园林木本植物季相的观赏价值,认识其存在的主要问题,从物候学角度对造园木本植物材料进行类型划分,提供了一种有效的方法。</p>
DOI:10.11707/j.1001-7488.20000207      [本文引用:2]
[Yang Guodong, Chen Xiaoqiu.Classification of phenophase combination of woody plants: A case study of cultivated plants in the Beijing botanical garden. Scientia Silvae Sinicae, 2000, 36(2): 39-46.]
[20] 刘剑, 胡立辉, 李树华. 北京“三山五园”地区景观历史性变迁分析. 中国园林, 2011, 27(2): 54-58.
梳理历史文献和以往研究成果,综合"三山五园"地区核心园林鼎盛时规模以及外围环境涵盖的范围,划定了"三山五园"地区的四至范围。搜集了多张历史地图,并结合同时期文献完善地图信息,根据地形图统一坐标和比例尺,予以改绘。将景观划分为古典园林、水体、农田、林地、建筑、道路、其他7个类型,分析4个代表年份间各景观类型的面积变化以及相互转化情况,揭示"三山五园"地区景观变迁的过程与驱动力,为园林的整体保护和可持续发展提供有益的借鉴。
DOI:10.3969/j.issn.1000-6664.2011.02.014      [本文引用:1]
[Liu Jian, Hu Lihui, Li Shuhua.Annalysis of the landscape historical transition of "Three hills and five gardens" region in Beijing. Chinese Landscape Architecture, 2011, 27(2): 54-58.]
[21] 宛敏谓, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979.
[本文引用:1]
[Wan Minwei, Liu Xiuzhen.China's National Phenological Observational Criterion. Beijing: Science Press, 1979.]
[22] 张福春. 气候变化对中国木本植物物候的可能影响. 地理学报, 1995, 50(5): 402-410.
In this paper, effects of global warming on phenological events of China are discussed.First, it is demonstrated that atmospheric temperature is the most important factor influencing plant phenophase: 1. the integral regresseion method is used to analyse the relationship between meteorological factors and phenophase of trees in spring in Beijing. The calculated results show that the relation between meteorological factors and phenophase is close. But the most important factor which influence the phenophase of trees in spring is temperature and their correlation coefficient is more than 0. 7. The sunshine and precipitation are not important factors. If precipitation and sunshine are similar to those in normal years. they may be analysed in three intervals:pre-winter inter and spring. The effect of spring temperature on phenophase is the most important. At that time. the higher the temperature is. the earlier the phenophase occurs. The temperature effect in pre-winter period is similar to that in spring, but the intensity of the effects is smaller. The low temperature in winter also affects the phenophase in spring. but the higher the temperature in that time. the later the phenophase. It is shown that low temperature in winter is also an essential condition for the phenophases occurs. Secondary. the correlation coefficient between phenophase and annual mean temperature is calculated and the value is higher.Because atmospheric temperature is the most important factor on phenophase. a linear model contains only phenophase and annual mean temperature factors are established by the author. Finally, we apply this model to evaluate changes of the phenological events in China for future global warming scenario. The calculated results are as follows:1. Assuming a 2 rise of annual mean temperature. trees phenological events of spring in China will occur about 3-4 days earlier, but may be postponed for 3-4 days in autumn. The greenleaf stage will be prolonged for 6-8 days.2. Assuming the scenario of a doubled CO2 content on the next century which caddses a 1. 0- 1. 8 rise in the annual mean temperature in China, phenological events in China will be 4-6 days earlier in spring, but will be postponed 4-6 day in autumn. The green-leaf stage is prolonged for 10-12 days. The mature date of fruits and seeds may be earlier. Moreover. the number of days in the changes of phenological events in the nothern part of China will be more than those in the southern part.
DOI:10.1088/0256-307X/12/7/010      [本文引用:2]
[Zhang Fuchun.Effect of global warming on plant phonological everts in China. Acta Geographica Sinica, 1995, 50(5): 402-410.]
[23] Ahas R, Jaagus J, Aasa A.The phenological calendar of Estonia and its correlation with mean air temperature. International Journal of Biometeorology, 2000, 44(4): 159-66.
DOI:10.1007/s004840000069      [本文引用:1]
[24] 刘赫男, 刘玉莲, 朱红蕊, . 1998-2008年黑龙江省木本植物物候期变化特征. 中国农业气象, 2012, 33(1): 34-40.
选用1998-2008年黑龙江省26个农业气象试验站的紫丁香(Syringa oblata)、旱柳(Salix matsudana)、榆树(Ulmus pumila)和小叶杨(Populus simonii)等木本植物物候资料,利用统计方法分析木本植物的演变。结果表明,旱柳进入萌动期-叶芽开放期最早,在3月末-4月末,其余3种植物在4月中旬-5月初进入该期;4种植物在4月下半月-5月中旬进入展叶始期,4月下旬-5月末进入开花始期;旱柳和榆树的果熟期在5月下半月-6月初,小叶杨则在5月末-6月末;4种植物的叶初变色期集中在9月中旬-10月中旬,在9月末-10月末进入落叶始期。4种植物春、秋季物候期均呈推迟趋势,其中紫丁香的展叶期、开花盛期、叶变色期,榆树的开花期、叶变色期和落叶始期以及小叶杨所有秋季物候期均明显推迟(P<0.05)。除少部分站点外,大多站点4种植物的生长季长度没有明显的变化趋势。
DOI:10.3969/j.issn.1000-6362.2012.01.005      [本文引用:1]
[Liu Henan, Liu Yulian, Zhu Hongrui, et al.Phenology change of woody plants during 1998-2008 in Heilongjiang province. Chinese Journal of Agrometeorology, 2012, 33(1): 34-40.]
[25] 高祺, 缪启龙, 岳艳霞. 河北省木本植物物候变化特征及其对气候变暖的响应. 中国农业气象, 2011, 32(1): 17-22.
以1981-2006年河北省10个国家农业气象观测站的木本植物物候观测资料和47个气象站的地面观测资料为基础,运用线性倾向估计、Pearson相关系数、EOF和REOF等统计学方法,研究了河北省木本植物物候期的变化特征及其对气候变暖的响应。结果表明:河北省木本植物展叶始期总体呈提前趋势,其中东部沿海平原提前趋势最大,中南部平原次之,西北部山区最小;叶初变色期主要表现出推迟趋势,生长季长度以延长趋势为主;春季气温对展叶始期的影响最显著,河北省春季气温每上升1℃,木本植物展叶始期提前4.6d;各站点生长季倾向率与年均温倾向率呈显著正相关,即年均温升幅大的站点,生长季延长的幅度也较大。研究结果对丰富河北省物候与气候变化关系研究具有一定意义。
DOI:10.3969/j.issn.1000-6362.2011.01.004      [本文引用:1]
[Gao Qi, Miao Qilong, Yue Yanxia.Phenology change for woody plants and its pesponse to climate warming in Heibei province. Chinese Journal of Agrometeorology, 2011, 32(1): 17-22.]
[26] Menzel A.Trends in phonological phase in Europe between 1951 and 1996. International Journal of Biometeorology, 2000, 44(2): 76-81.
DOI:10.1007/s004840000054      [本文引用:1]
[27] 徐韵隹, 仲舒颖, 戴君虎, . 1978-2014年牡丹江地区植物花期变化及模型模拟. 地理研究, 2017, 36(4): 779-789.
近几十年来,许多研究表明植物始花期随气候变暖普遍提前,但对植物花期长度变化的研究仍较少。利用1978-2014年牡丹江地区40种植物的始花期和末花期观测资料,分析该地区主要植物花期的时间分布、变化特征及与气候变化的关系,并评估两种物候模型对花期模拟的适用性。结果表明:(1)牡丹江地区40种植物的花期开始日在4月13日-8月27日之间,结束日在4月25日至9月13日之间,且均集中分布在5月份。花期长度的变化范围在6~69天。大部分植物(62.5%)花期长度在10~20天。(2)在研究时段内,植物花期物候出现了一定程度的变化,但大多数植物的变化趋势并不显著。始花期平均推迟速率为0.06天/10a,只有1种植物变化趋势显著(P0.05);末花期平均提前速率为0.28天/10a,没有植物变化显著;花期长度平均缩短0.35天/10a,只有4种植物显著缩短。(3)绝大多数植物始花期和末花期的年际变化与季前温度呈显著负相关关系,温度敏感度分别在-6.2天/℃~-2.3天/℃和-5.0天/℃~-1.2天/℃。花期变化趋势不显著与牡丹江地区春季增温趋势不显著有关。(4)回归模型能够准确地模拟始花期、末花期的年际变化,平均拟合优度R~2分别为0.65和0.38,对花期长度年际变化的模拟效果稍差(平均R~2为0.17)。相比之下,GDD(Growing Degree Days)模型对花期模拟的效果更好,无论是对始、末花期还是花期长度均提高了拟合优度。该研究可为认识植物花期对气候变化的响应以及花期的模拟预报提供依据。
DOI:10.11821/dlyj201704015      [本文引用:1]
[Xu Yunjia, Zhong Shuying, Dai Junhu, et, al. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geographical Research, 2017, 36(4): 779-789.]
[28] 李瑞英. 鲁西南木本植物生长季及物候期持续日数对气候变暖的响应. 气象与环境学报, 2015, 31(1): 90-95.
[本文引用:1]
[Li Ruiying.Response of growing period and phonological duration of woody plants to climate warming in southwest rin Shandong province. Journal of Meteorology and Environment, 2015, 31(1): 90-95.]
[29] Hafdahl C E, Craig T P.Flowering phenology in Solidago altissima: Adaptive strategies against temporal variation in temperature. Journal of Plant Interactions, 2014, 9(1): 122-127.
The evolution of flowering phenology is the result of a trade-off that balances many factors, including growth, reproductive capacity, and temporal overlap with pollinators. When there is large temporal variation in temperature, particularly in the onset of frost, the optimum flowering strategy will vary from year to year. In Duluth, MN, USA, the end of the growing season can vary by more than 30 days. In this study, we observed flowering phenology and pollinator abundance on 15 genotypes of Solidago altissima in Duluth, MN. We predicted that temporal variation in temperature would lead to a range of flowering strategies in the S. altissima population; some genotypes flower early and in synchrony, some ‘hedge their bets’ by flowering over a range of dates, and others have an intermediate strategy. Our results indicate that genotypes vary in mean flowering date and duration of flowering and, for the two observed years, pollinator abundance was highest for early-flowering genotypes.
DOI:10.1080/17429145.2013.777478      [本文引用:1]
[30] Way D A, Montgomery R A.Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell and Environment, 2015, 38(9): 1725-1736.
Abstract Increasing temperatures should facilitate the poleward movement of species distributions through a variety of processes, including increasing the growing season length. However, in temperate and boreal latitudes, temperature is not the only cue used by trees to determine seasonality, as changes in photoperiod provide a more consistent, reliable annual signal of seasonality than temperature. Here, we discuss how day length may limit the ability of tree species to respond to climate warming in situ , focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth, as well as the potential role of photoperiod in controlling carbon uptake and water fluxes in forests. We also review whether there are patterns across plant functional types (based on successional strategy, xylem anatomy and leaf morphology) in their sensitivity to photoperiod that we can use to predict which species or groups might be more successful in migrating as the climate warms, or may be more successfully used for forestry and agriculture through assisted migration schemes.
DOI:10.1111/pce.12431      PMID:25142260      [本文引用:1]
[31] 张静, 赵成章, 盛亚萍, . 高寒山区混播草地燕麦和毛苕子种间竞争对密度的响应. 生态学杂志, 2012, 31(7): 1605-1611.
混播草地种内与种间竞争的强弱和转化受混播牧草相对密度的制约。2010年6&mdash;9月采用取代系列实验方法,在石羊河上游建立燕麦(<em>Avena sativa</em>)和毛苕子(<em>Vicia villosa</em>)混播草地,按燕麦与毛苕子相对密度设置1∶0(KY)、8∶2(A)、6∶4(B)、5∶5(C)、4∶6(D)、2∶8(E)和0∶1(KM) 7个处理,研究了密度制约下混播草地一年生牧草种间竞争的变化。结果表明:混播草地在密度影响下各物候期的种内与种间竞争发生不同程度的转化,所有混播处理中燕麦相对产量(<em>RY</em><sub>y</sub>)随牧草的生长逐渐增加;混播处理A、B和C中毛苕子相对产量(<em>RY</em><sub>m</sub>)随牧草的生长逐渐减小,混播处理D和E中逐渐增加;在燕麦出苗期和分蘖期除混播处理A外其余混播处理中两牧草为敌对关系(<em>RYT</em><1),在牧草生长后期所有混播处理中两牧草转化为共生关系(<em>RYT</em>&lt;1),且燕麦的竞争能力强于毛苕子(<em>RCC</em><sub>y</sub>&gt;1、<em>RCC</em><sub>m</sub>&lt;1);所有混播处理在牧草整个生长阶段的竞争偏利于燕麦(<em>AG</em><1)。混播草地内种间竞争在各物候期表现出明显的密度制约现象,实现了资源协同利用目标。
[本文引用:1]
[Zhang Jing, Zhao Chengzhang, Sheng Yaping, et al.Inter-specific competition between Avena sativa and Vicia villosa in mixed sowing grassland in alpine region of the Qilian mountain in response of grass density. Chinese Journal of Ecology, 2012, 31(7): 1605-1611.]
[32] Ge Q S, Dai J H, Zheng J Y, et al.Advances in first bloom dates and increased occurrences of yearly second blooms in eastern China since the 1960s: Further phenological evidence of climate warming. Ecological Research, 2011, 26(4): 713-723.
AbstractConfirming the results of previous regional studies on changes in first bloom dates (FBD) in China, this study provides evidence that complements conclusions drawn from studies of phenological changes in other dynamic climate systems in the Northern Hemisphere. Furthermore, increased occurrences of yearly second blooms (YSB) further reinforce results derived from other studies indicating a recent trend of generalized climate warming across China. Additionally, ascertaining changes in FBD and YSB against a recent background not only provides a hitherto poorly formulated autumnal equivalent to the well-studied shifts in FBD, but also formulates both spring and autumn flowering changes in recent years. Data in this study are derived from observations made from 1963 to 2006 by the Chinese Phenological Observation Network (CPON) nationwide system of monitoring stations that has made observations of over 173 species from across China since 1963. At each site, the mean value of each species annual deviation and spring mean surface temperatures were calculated. For each species, years and locations were also recorded for species in which second blooms (YSB) occurred. Of the 46 FBD samples, 31 showed advances from the mean, blooming earlier over the course of the study period. Notably, although only 8 of the 46 FBD samples showed significance levels of 0.1 or better, the average FBD did advance by 5.3 days. After the 1980s, the frequency of YSB occurrence remained steady, declining a little from the peak in the 1980s, but still exhibiting occurrences far more than were observed earlier. The data from this study clearly indicate that both the phenological advance of FBD in spring and the increased occurrence of YSB are consistent with climate warming.
DOI:10.1007/s11284-011-0830-7      [本文引用:1]
[33] 刘俊, 李云云, 刘浩龙, . 气候变化对成都桃花观赏旅游的影响与人类适应行为. 地理研究, 2016, 35(3): 504-512.
基于中国物候观测网14年桃花盛花期数据,1987-2014年四川历年报纸100余条桃花节日期记录,以及1987-2013年研究区月均温数据,采用小波分析、相关分析等方法评估了气候变化对桃花观赏旅游的影响。结果表明:研究区气候变化显著,物候期对气候变化高度敏感,桃花盛花期前三个月和前一个月温度升高1℃,盛花期分别提前6.47天和4.16天。桃花节开幕日期与温度变化趋势及周期对比、两者相关分析发现,过去近30年,成都桃花节组织者通常会根据温度变化调节赏花节开幕日期,但2000-2008年更多的是将节日安排在周末。研究证明气候变化已通过改变植物花期,对赏花旅游产生了影响。管理部门调节节庆日期的方式是赏花旅游适应气候变化影响的有效策略。研究可为评估气候变化对其他时令旅游活动的影响提供新的视角和方法,也可为中国赏花旅游提出适应气候变化的有效策略提供科学依据。
DOI:10.11821/dlyj201603009      [本文引用:1]
[Liu Jun, Li Yunyun, Liu Haolong, et al.Climate change and peach blossom viewing: Impact and adaptation. Geographical Research, 2016, 35(3): 504-512.]
[34] Wang L, Ning Z Z, Wang H J, et al.Impact of climate variability on flowering phenology and its implications for the schedule of blossom festivals. Sustainability, 2017, 9(7): 1127.
DOI:10.3390/su9071127      [本文引用:1]
[35] Wang L, Ge Q S, Ning Z Z, et al.Effect of phenological change in ornamental plants on the dates of spring outings to popular locations, Beijing, China. Climate Research, 2017, 72(3): 177-182.
DOI:10.3354/cr01470      [本文引用:1]
版权所有 © 《地理研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn