中国海水养殖碳汇经济价值时空演化及影响因素分析
|
孙康, 崔茜茜, 苏子晓, 王雁楠
|
Spatio-temporal evolution and influencing factors of the economic value for mariculture carbon sinks in China
|
SUN Kang, CUI Xixi, SU Zixiao, WANG Yannan
|
|
表6 2008—2016年海水养殖碳汇的结构效应STE
|
Tab. 6 The structural effects STE of mariculture carbon sinks from 2008 to 2016
|
|
城市 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 全国 | 0.9986 | 1.0008 | 0.9880 | 1.0268 | 0.9999 | 1.0303 | 1.0042 | 1.0421 | 0.9487 | 河北 | 0.9915 | 1.0763 | 0.9215 | 1.1876 | 0.9874 | 1.0518 | 0.9903 | 0.9807 | 0.9891 | 辽宁 | 0.9791 | 1.0064 | 1.2198 | 1.0190 | 0.9971 | 1.0188 | 0.9179 | 0.9439 | 0.8949 | 山东 | 0.9842 | 0.9792 | 0.9324 | 1.0452 | 0.9982 | 1.0923 | 0.9865 | 1.0085 | 0.8918 | 江苏 | 1.2607 | 0.7372 | 0.8378 | 0.7671 | 1.0977 | 0.7982 | 0.9090 | 1.0033 | 1.2339 | 浙江 | 1.0192 | 1.0227 | 0.9969 | 0.8605 | 1.0031 | 0.9566 | 1.0493 | 1.1405 | 1.4430 | 福建 | 1.0265 | 0.9933 | 0.9854 | 1.0113 | 0.9943 | 1.0270 | 1.0616 | 1.1058 | 0.9854 | 广东 | 1.0963 | 0.9955 | 1.0251 | 1.0073 | 0.9982 | 0.9293 | 0.9548 | 1.0237 | 0.8092 | 广西 | 0.9959 | 1.0155 | 0.9784 | 0.9963 | 1.0000 | 0.9988 | 1.0241 | 1.0379 | 1.0057 | 海南 | 0.9795 | 1.0277 | 0.9645 | 1.0968 | 1.0000 | 1.3689 | 0.9028 | 1.0789 | 13.0888 |
|
|
|