High spatial resolution population distribution simulation based on building information and multi-agent

Expand
  • 1. Center of Integrated Geographic Information Analysis, Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China;
    2. School of Geography Sciences, Guangzhou University, Guangzhou 510006, China

Received date: 2013-03-22

  Revised date: 2013-09-23

  Online published: 2014-03-10

Abstract

Knowledge of population distribution is essential for understanding and responding to many social, political, economical and environmental problems. Many studies have been done to estimate population distribution. However, most of the existing methods cannot produce high spatial resolution results or require data which are difficult to acquire. In this paper, we present a method of simulating high spatial resolution population distribution, which uses a multi-agent model based on building information. Firstly, simulation environment of the multi-agent model is constructed based on building information, such as height, area, density; Secondly, the property and behavior rules are defined, based on statistical data and survey reports; Finally, the multi-agent model is used to simulate population distribution of a community named Tairi, which is located in Fengxian District, Shanghai. Results prove that our multi-agent population model is capable of producing high spatial resolution population distribution results at acceptable accuracy level. The method is highly automated and the data it requires are easily available, thereby it has great potential of application.

Cite this article

ZHUO Li, HUANG Xinrui, TAO Haiyan, WANG Fang, XIE Yuhang . High spatial resolution population distribution simulation based on building information and multi-agent[J]. GEOGRAPHICAL RESEARCH, 2014 , 33(3) : 520 -531 . DOI: 10.11821/dlyj201403011

References

[1] 杨云彦. 人口、资源与环境经济学. 北京: 中国经济出版社, 1999.[Yang Yunyan. The Economics of Population, Resource and Environment. Beijing: China Economic Publishing House, 1999.]
[2] 中国科学院可持续发展研究组. 中国可持续发展战略报告. 北京: 科学出版社, 2000.[Sustainable Development Strategy Study Group, Chinese Academy of Sciences. China Sustainable Development Report. Beijing: Science Press, 2000.]
[3] 李素, 庄大方. 基于RS 和GIS 的人口估计方法研究综述. 地理科学进展, 2006, 25(1): 109-121.[Li Su, Zhuang Dafang. A review on RS- and GIS based population estimation methods. Progress in Geography, 2006, 25(1): 109-121.]
[4] Lo C P, Welch R. Chinese urban population estimate 1977. Annals of the Association of American Geographers, 1977, 67(2): 246-253.
[5] Kraus S P, Senger L W. Estimating Population from photographically determined residential land use types. Remote Sensing of Environment, 1974, 3(1): 35-42.
[6] Lisaka J, Hegedus E. Population estimation from landsat imagery. Remote Sensing of Environment, 1982, 12: 259-272.
[7] Weber C. Per-zone classification of urban land use cover for urban population estimation in environmental remote sensing from regional to global scales. In: Foody G M, Curran P J (eds.). Chichester, UK: New York, NY: Wiley, 1994: 142-148.
[8] Sutton P, Roberts D. A comparaton of nighttime satellite imagery and population density for the continental United States. Photogram Metric Engineering and Remote Sensing, 1997, 63(11): 1303-1313.
[9] Yuan Y., Smith R. M., Limp W. F. Remodeling census population with spatial information from Landsat TM imagery. Computer, Environment and Urban Systems, 1997, 21: 245-258.
[10] Lo C P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogrammetric Engineering and Remote Sensing, 2001, 67: 1037-1047.
[11] Langford M, Harvey J T. The use of remotely sensed data for spatial disaggregation of published census population counts. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 2001: 260-264.
[12] Harvey J T. Population estimation models based on individual TM pixels. Photogram Metric Engineering and Remote Sensing, 2002, 68(11): 1181-1192.
[13] Li G., Weng Q. Using Landsat ETM imagery to measure population density in Indianapolis, Indiana, USA. Photogrammetric Engineering and Remote Sensing, 2005, 71: 947-958.
[14] Lu D S, Weng Q, Li G Y. Residential population estimation using a remote sensing derived impervious surface approach. International Journal of Remote Sensing, 2006, 27(16): 3553-3570.
[15] Zhuo L, Ichinose T, Zheng J, et al., Modeling population density of China at pixel level based on DMSP/OLS non-radiance calibrated nighttime light image. International Journal of Remote Sensing, 2009, 30(4): 1003-1018.
[16] Dong P, Ramesh S, Nepali A. Evaluation of small-area population estimation using LiDAR, Landsat TM and parcel data. International Journal of Remote Sensing, 2010, 31(21): 5571-5586.
[17] Silva′n-ca′rdenas J L, Wang L, Rogerson P, et al. Assessing fine-spatial-resolution remote sensing for small-area population estimation. International Journal of Remote Sensing, 2010, 31(21): 5605-5634.
[18] 高志强, 刘纪远, 庄大方. 基于遥感和GIS 的中国土地资源生态环境质量同人口分布的关系研究. 遥感学报, 1999, 3 (1): 66-70.[Gao Zhiqiang, Liu Jiyuan, Zhuang Dafang. The relations analysis between ecological environmental quality of Chinese land resource and population. Journal of Remote Sensing, 1999, 3(1). 66-70.]
[19] 杨小唤, 江东, 王乃斌, 等. 人口数据空间化的处理方法. 地理学报, 2002, 57(增刊): 070-075.[Yang Xiaohuan, Jiang Dong, Wang Naibin, et al. Method of pixelizing population data. Acta Geographica Sinica, 2002, 57(supp): 71-75.]
[20] 刘建军, 李春来. 基于遥感和GIS 的巢湖流域人口信息提取. 科学通报, 2002, 47(23): 1835-1837.[Liu Jianjun, Li Chunlai. Population information extraction of the Chaohu Basin based on Remote Sensing and GIS. Chinese Science Bulletin, 2002, 47(23): 1835-1837.]
[21] 冯健. 杭州市人口密度空间分布及其演化的模型研究. 地理研究, 2002, 21(5): 635- 646.[Feng Jian. Modeling the spatial distribution of urban population density and its evolution in Hangzhou. Geographical Research, 2002, 21(5): 635-646.]
[22] 高向东, 吴文钰. 20 世纪90 年代上海市人口分布变动及模拟. 地理学报, 2005, 60(4): 637-644.[Gao Xiaodong, Wu Wenyu. Population redistribution and modelling of Shanghai City in 1990s. Acta Geographica Sinica, 2005, 60(4): 637-644.]
[23] 刘纪远, 岳天祥, 王英安, 等. 中国人口密度数字模拟. 地理学报. 2003. 58(1). 17-24.[Liu Jiyuan, Yue Tianxiang, Wang Ying'an, et al. Digital simulation of population density in China. Acta Geographica Sinica, 2003, 58(1): 17-24.]
[24] 廖顺宝, 孙九林. 基于GIS 的青藏高原人口统计数据空间化. 地理学报, 2003, 58(1): 25-33.[Liao Shunbao, Sun Jiulin. GIS based spatialization of population census data in Qinghai-Tibet Plateau. Acta Geographica Sinica, 2003, 58 (1): 25-33.]
[25] 田永中, 陈述彭, 岳天祥, 等. 基于土地利用的中国人口密度模拟. 地理学报. 2004. 59(2). 283-292.[Tian Yongzhong, Chen Shupeng, Yuetianxiang, et al. Simulation of Chinese population density based on landuse. Acta Geographica Sinica, 2004, 59(2): 283-292.]
[26] 卓莉, 陈晋, 史培军, 等. 基于夜间灯光数据的中国人口密度模拟. 地理学报, 2005, 60(2). 266-275.[Zhuo Li, Chen Jin, Shi Peijun, et. al. Modeling population density of China in 1998 based on DMSP/OLS nighttime light image. Acta Geographica Sinica, 2005, 60(2): 266-275.]
[27] 吕安民, 李成名. 基于遥感影像的城市人口密度模型. 地理学报, 2005, 60(1): 158-164.[Lu Anmin, Li Chengming. Spatial continuous surface model of population density. Acta Geographica Sinica, 2005, 60(1): 158-164.]
[28] 杜国明, 张树文. 基于遥感的城乡人口分布模拟. 遥感学报, 2007, 11(2). 252-256.[Du Guoming, Zhang Shuwen. Simulation urban-rural population distribution based remote sensing: Taking Songyuan City as a case study. Journal of Remote Sensing, 2007, 11(2). 252-256.]
[29] Serkan U, Ejaz H, Jie S. Building population mapping with aerial imagery and GIS data. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(6): 841-852.
[30] Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University.
[31] Bhaduri B, Bright E, Coleman P, et al. LandScan USA: A high resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal, 2007, 69: 103-117.
[32] Gallego F J. A population density grid of the European Union. Population and Environment, 2010, 31: 460-473.
[33] 冯甜甜, 龚健雅. 基于建筑物提取的精细尺度人口估算研究. 遥感技术与应用, 2010, 25(3): 323-327.[Feng Tiantian, Gong Jianya. Investigation on small-area population estimation based on building extrcation. Remote Sensing Technology and Application, 2010, 25(3): 323-327.]
[34] 史忠植. 智能主体及其应用. 北京: 科学出版社, 2002.[Shi Zhongzhi. Intelligent Agents and Their Applications. Beijing: Science Press, 2002.]
[35] Zielinska A L, Jankowski P. Agent-based models as laboratories for spatially explicit planning policites. Environment and Planning B: Planning and Design, 2007, 34(2): 316-335.
[36] 吴静, 王铮. 2000 年来中国人口地理演变的Agent 模拟分析. 地理学报, 2008, 63(2): 186-194.[Wu Jing, Wang Zheng. Agent- based simulation on the evolution of population geography of China during the past 2000 years. Acta Geographica Sinica, 2008, 63(2): 186-194.]
[37] 陶海燕, 黎夏, 陈晓翔, 等. 基于多智能体的地理空间分异现象模拟: 以城市居住空间演变为例. 地理学报, 2007, 62 (6): 579-588.[Tao Haiyan, Li Xia, Chen Xiaoxiang, et al. Method exploration of geographical spatial differentiation based on multi-agent: A case study of urban residential simulations. Acta Geographica Sinica, 2007, 62(6): 579-588.]
[38] 张鸿辉, 曾永年, 金晓斌, 等. 多智能体城市土地扩张模型及其应用. 地理学报, 2008, 63(8): 869-881.[Zhang Honghui, Zeng Yongnian, Jin Xiaobin, et al. Urban land expansion model based on multi-agent system and application. Acta Geographica Sinica, 2008, 63(8): 869-881.]
[39] 陶海燕, 黎夏, 陈晓翔. 基于多智能体的居住空间格局演变的真实场景模拟. 地理学报, 2009, 64(6): 665-676.[Tao Haiyan, Li Xia, Chen Xiaoxiang. Simulation for evolvement of residential spatial patterns in real scene based on multi-agent. Acta Geographica Sinica, 2009, 64(6): 665-676.]
[40] 刘小平, 黎夏, 陈逸敏, 等. 基于多智能体的居住区位空间选择模型. 地理学报, 2010, 65(6): 695-707.[Liu Xiaoping, Li Xia, Chen Yimin, et al. Agent-based model of residential location. Acta Geographica Sinica, 2010, 65(6): 695-707.]
[41] 黄信锐. 基于建筑物信息和多智能体的高空间分辨率人口分布模拟. 广州: 中山大学, 2012.[Huang Xinrui. High spatial resolution population distribution simulation. Guangzhou: Sun Yet-sen University, 2012.]
[42] 黎夏, 刘凯. GIS 与空间分析: 原理和方法. 北京: 科学出版社, 2006.[Li Xia, Liu Kai. GIS and spatial analysis: Theory and methods. Beijing: Science Press, 2006.]
[43] 上海奉贤区人民政府. 奉贤年鉴. 上海: 学林出版社, 2010.[People's Government of Fengxian District. Shanghai. Yearbook of Fengxian 2020. Shanghai: Xuelin Press, 2010.]
Outlines

/