Railway passenger transport spatial contacts and their structure Tupu of central cities in China
Received date: 2014-05-15
Request revised date: 2014-10-12
Online published: 2015-01-10
Copyright
On the basis of current interactive connection of railway passenger transport between 286 central cities in China and the analysis of different passenger train types-local, rapid, express, multiple units and high-speed railway, the paper intends to comprehensively deconstruct the spatial pattern of national railway passenger transport and its structure characteristics by using GIS methods based on O-D contact network, whose goal is to reveal the national railway passenger spatial contacts, distribution regularity and regional difference more clearly and profoundly, as well as new technical ideas and more data for transportation spatial connect research by means of making use of central cities' interactive connection data of "city-train-city" and overcoming the problem that traditional railway connection only has the information between origination and destination and lacks that of the intermediate stations. The results show that the spatial framework of national railway passenger transport between central cities presents an eastward tilted “kai” font shape, which mainly consists of two vertical train lines: Beijing-Shanghai to Shanghai-Shenzhen, Beijing-Guangzhou to Beijing-Harbin, and two horizontal lines: Lanzhou-Lianyungang to Lanzhou-Urumqi and Shanghai-Kunming. The linkage of national railway passenger transport between central cities is characterized by Rank-Size distribution, which belongs to the most optimal centralized distribution in natural state. The connection of national railway passenger transport between central cities generally relies on important transport axis and neighbor core cities. This study clearly demonstrates the major contact directions and corresponding intensities between inter and outer railway transports in a given subdivision types of train number. The study shows that the rapid train dominates the current railway passenger transport in China. The rapid development of the multiple units and high-speed railway technology has greatly changed the structure of Chinese railway passenger transport. The contacts of multiple units and high-speed railways concentrate in three economic regions of eastern China. However, there is a tighter linkage between Beijing and Shanghai, as well as Beijing and Guangzhou compared with that between Shanghai and Guangzhou (Shenzhen). A relative weak contact between Shanghai and Guangzhou (Shenzhen) is attributed to the infrastructure of high-speed railway facilities lagging behind.
WANG Haijiang , MIAO Changhong . Railway passenger transport spatial contacts and their structure Tupu of central cities in China[J]. GEOGRAPHICAL RESEARCH, 2015 , 34(1) : 157 -168 . DOI: 10.11821/dlyj201501014
Fig. 1 China's central cities railway passenger transport connects spatial pattern图1 中国中心城市铁路客运联系空间格局 |
Fig. 2 China's central cities railway passenger transport train schedule spatial structure图2 全国中心城市铁路客运班次空间分布 |
Tab. 1 The top 10 linkages by railway passenger transport in China表1 全国中心城市间铁路客运联系量前10名 |
全部车次 | 普快 | 动车(D字头) | 高铁(G字头) | 快速(K字头) | 特快(T字头) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
联系 | 车次 | 联系 | 车次 | 联系 | 车次 | 联系 | 车次 | 联系 | 车次 | 联系 | 车次 | |||||
上海—南京 | 419 | 沈阳—四平 | 42 | 广州—东莞 | 172 | 上海—南京 | 244 | 株洲—衡阳 | 98 | 武汉—郑州 | 43 | |||||
上海—苏州 | 362 | 长春—四平 | 38 | 广州—深圳 | 172 | 上海—苏州 | 196 | 广州—韶关 | 95 | 北京—石家庄 | 42 | |||||
上海—无锡 | 355 | 天津—唐山 | 37 | 深圳—东莞 | 172 | 上海—无锡 | 186 | 杭州—金华 | 94 | 长沙—武汉 | 41 | |||||
南京—无锡 | 341 | 沈阳—长春 | 36 | 福州—厦门 | 160 | 南京—苏州 | 171 | 广州—衡阳 | 92 | 郑州—长沙 | 37 | |||||
南京—苏州 | 338 | 沈阳—铁岭 | 35 | 福州—泉州 | 138 | 南京—无锡 | 167 | 衡阳—韶关 | 91 | 郑州—石家庄 | 30 | |||||
苏州—无锡 | 320 | 长春—哈尔滨 | 35 | 福州—莆田 | 130 | 苏州—无锡 | 154 | 金华—鹰潭 | 86 | 广州—长沙 | 29 | |||||
上海—常州 | 289 | 铁岭—四平 | 33 | 厦门—泉州 | 120 | 广州—长沙 | 144 | 广州—郴州 | 85 | 广州—武汉 | 29 | |||||
南京—常州 | 287 | 哈尔滨—四平 | 33 | 厦门—莆田 | 111 | 上海—常州 | 138 | 韶关—郴州 | 85 | 武汉—石家庄 | 28 | |||||
苏州—常州 | 278 | 沈阳—哈尔滨 | 31 | 吉林—长春 | 97 | 南京—常州 | 132 | 衡阳—郴州 | 81 | 石家庄—邯郸 | 26 | |||||
广州—深圳 | 273 | 长春—铁岭 | 30 | 泉州—莆田 | 95 | 苏州—常州 | 126 | 株洲—韶关 | 79 | 广州—韶关 | 26 |
Tab. 2 Regression analysis of central cities railway passenger transport rank-size rule表2 全国中心城市铁路客流位序—规模分布的回归分析 |
车次类型 | 回归曲线 | R2值 |
---|---|---|
全部车次 | lnP = 8.729-1.051 lnR | 0.749 |
动车 | lnP = 7.405-1.169 lnR | 0.790 |
特快 | lnP = 5.871-0.921 lnR | 0.813 |
普快 | lnP = 6.048-0.913 lnR | 0.857 |
高铁 | lnP = 6.563-0.886 lnR | 0.935 |
快速 | lnP = 7.210-0.860 lnR | 0.688 |
Fig. 3 Central cities railway passenger transport rank-size rule图3 中心城市铁路客运的位序—规模分布 |
Tab. 3 Main railway passenger transport contact directions and their intensity in major cental cities of China表3 全国主要中心城市铁路客运主要联系方向及车次数量 |
主要中心城市 | 铁路联系车次数 | 铁路客运连接率 | 主要联系方向 (依铁路客运联系车次数量排序前10名) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
全部车次 | 普快 | 动车 | 高铁 | 快速 | 特快 | |||||||
北京 | 3976 | 287 | 501 | 1197 | 1191 | 570 | 0.74 | 天津、石家庄、济南、保定、郑州、南京、上海、邯郸、德州、徐州 | ||||
天津 | 2772 | 430 | 333 | 253 | 1237 | 338 | 0.54 | 北京、唐山、德州、沧州、济南、沈阳、锦州、徐州、南京、长春 | ||||
石家庄 | 2584 | 116 | 64 | 589 | 1228 | 558 | 0.57 | 北京、郑州、保定、邯郸、邢台、安阳、新乡、武汉、太原、阳泉 | ||||
太原 | 853 | 179 | 29 | 134 | 405 | 77 | 0.46 | 石家庄、阳泉、北京、保定、忻州、吕梁、衡水、运城、西安、郑州 | ||||
呼和浩特 | 283 | 144 | 0 | 0 | 106 | 33 | 0.26 | 包头、北京、大同、乌海、石嘴山、银川、天津、白银、兰州、通辽 | ||||
沈阳 | 2550 | 470 | 554 | 0 | 1238 | 272 | 0.52 | 长春、四平、唐山、哈尔滨、大连、锦州、鞍山、铁岭、天津、葫芦岛 | ||||
大连 | 722 | 140 | 320 | 0 | 210 | 48 | 0.22 | 沈阳、鞍山、长春、辽阳、四平、哈尔滨、营口、铁岭、齐齐哈尔、吉林 | ||||
长春 | 1765 | 345 | 482 | 0 | 750 | 186 | 0.47 | 沈阳、四平、哈尔滨、吉林、铁岭、唐山、大连、锦州、天津、鞍山 | ||||
哈尔滨 | 1362 | 350 | 245 | 0 | 590 | 173 | 0.41 | 沈阳、长春、四平、铁岭、大庆、唐山、齐齐哈尔、绥化、锦州、天津 | ||||
上海 | 4616 | 127 | 1012 | 1476 | 1624 | 355 | 0.64 | 南京、苏州、无锡、常州、杭州、镇江、嘉兴、徐州、济南、北京 | ||||
南京 | 3983 | 188 | 731 | 1334 | 1466 | 243 | 0.61 | 上海、无锡、苏州、常州、镇江、徐州、济南、蚌埠、北京、合肥 | ||||
杭州 | 2816 | 163 | 632 | 333 | 1458 | 207 | 0.59 | 上海、嘉兴、金华、鹰潭、衢州、南京、宁波、上饶、温州、苏州 | ||||
宁波 | 922 | 0 | 574 | 0 | 333 | 0 | 0.31 | 杭州、绍兴、温州、台州、福州、上海、宁德、厦门、嘉兴、泉州 | ||||
合肥 | 1591 | 79 | 369 | 221 | 885 | 33 | 0.44 | 南京、无锡、苏州、上海、常州、镇江、六安、武汉、淮南、芜湖 | ||||
福州 | 1167 | 38 | 832 | 0 | 293 | 0 | 0.35 | 厦门、泉州、莆田、温州、宁德、宁波、杭州、台州、南平、上海 | ||||
厦门 | 927 | 8 | 640 | 0 | 279 | 0 | 0.31 | 福州、泉州、莆田、漳州、龙岩、宁德、温州、宁波、杭州、台州 | ||||
南昌 | 1686 | 157 | 112 | 0 | 1207 | 193 | 0.53 | 九江、鹰潭、吉安、武汉、赣州、惠州、黄石、东莞、鄂州、阜阳 | ||||
济南 | 2630 | 294 | 393 | 866 | 999 | 78 | 0.57 | 北京、南京、徐州、上海、德州、天津、沧州、淄博、潍坊、枣庄 | ||||
青岛 | 772 | 55 | 165 | 163 | 363 | 26 | 0.37 | 济南、潍坊、淄博、北京、德州、天津、徐州、沧州、唐山、沈阳 | ||||
郑州 | 3874 | 274 | 139 | 840 | 1930 | 691 | 0.62 | 武汉、石家庄、西安、北京、洛阳、长沙、商丘、邯郸、信阳、漯河 | ||||
武汉 | 3856 | 109 | 471 | 1003 | 1595 | 641 | 0.62 | 长沙、广州、郑州、岳阳、衡阳、信阳、郴州、韶关、石家庄、驻马店 | ||||
长沙 | 2723 | 35 | 97 | 948 | 1164 | 477 | 0.45 | 广州、武汉、衡阳、岳阳、韶关、株洲、郴州、郑州、咸宁、信阳 | ||||
广州 | 3278 | 12 | 539 | 881 | 1376 | 467 | 0.59 | 深圳、长沙、东莞、韶关、郴州、衡阳、武汉、株洲、岳阳、郑州 | ||||
深圳 | 1373 | 14 | 344 | 326 | 558 | 126 | 0.38 | 广州、东莞、长沙、韶关、郴州、衡阳、惠州、赣州、吉安、武汉 | ||||
南宁 | 560 | 50 | 0 | 0 | 433 | 77 | 0.31 | 柳州、桂林、来宾、永州、株洲、玉林、衡阳、贵港、百色、昆明 | ||||
重庆 | 923 | 10 | 38 | 0 | 825 | 50 | 0.48 | 达州、广安、成都、安康、怀化、株洲、遵义、贵阳、襄阳、十堰 | ||||
成都 | 1304 | 46 | 82 | 0 | 1053 | 123 | 0.52 | 遂宁、绵阳、南充、德阳、广元、达州、重庆、宝鸡、安康、襄阳 | ||||
贵阳 | 970 | 8 | 0 | 0 | 905 | 57 | 0.39 | 怀化、安顺、六盘水、娄底、株洲、湘潭、遵义、曲靖、昆明、鹰潭 | ||||
昆明 | 614 | 10 | 0 | 0 | 553 | 51 | 0.38 | 曲靖、六盘水、贵阳、安顺、怀化、娄底、湘潭、百色、南宁、成都 | ||||
西安 | 2208 | 208 | 46 | 287 | 1272 | 376 | 0.55 | 郑州、洛阳、宝鸡、三门峡、渭南、兰州、天水、咸阳、武汉、石家庄 | ||||
兰州 | 1056 | 109 | 0 | 0 | 599 | 342 | 0.32 | 宝鸡、天水、西安、郑州、定西、武威、张掖、金昌、洛阳、嘉峪关 | ||||
西宁 | 254 | 0 | 0 | 0 | 154 | 100 | 0.18 | 兰州、西安、宝鸡、天水、郑州、拉萨、洛阳、三门峡、定西、徐州 | ||||
银川 | 285 | 52 | 0 | 0 | 195 | 38 | 0.24 | 石嘴山、包头、乌海、北京、固原、平凉、呼和浩特、白银、兰州、西安 | ||||
乌鲁木齐 | 416 | 55 | 0 | 0 | 175 | 186 | 0.23 | 张掖、金昌、武威、嘉峪关、兰州、宝鸡、天水、西安、酒泉、郑州 | ||||
拉萨 | 67 | 0 | 0 | 0 | 6 | 61 | 0.07 | 西宁、兰州、西安、宝鸡、郑州、成都、重庆、武汉、长沙、南京 |
注:铁路客运连接率为某一城市与全国其他城市实现铁路客运连接的比例,即与该城市实现铁路连接的城市数与全国城市总数的比值。 |
Fig. 4 Spatial structure atlas of railway passenger transport connects in central cities of China图4 全国中心城市铁路客运联系的空间结构图谱 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
|
[18] |
[
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
|
[26] |
[
|
[27] |
[
|
[28] |
[
|
/
〈 |
|
〉 |