Research on congestion spillover effects of international transfer traffic on hub airports
Received date: 2019-02-27
Request revised date: 2019-07-16
Online published: 2019-12-02
Copyright
Based upon the strategy of developing civil aviation to drive the prosperity of China, it is fundamental and significant to enhance the transfer level of international hub airports in China. This is particularly urgent during the process of enlarging the international air transport market. As hub competition becomes a worldwide phenomenon, attracting more transfer passengers has been challenging for both hub airports and their dominant full-service carriers when we design a complex hub-and-spoke network configuration. The capacity constraints at big hub airports, however, lead to severe congestion, which limits their accommodation of the increasing number of transfer passengers. In this way, there is a larger probability that transfers passengers to other hub airports located in other regions, i.e., the so-called “congestion spillover effects”. This paper examines the congestion spillover effects of the three biggest Chinese hub airports (i.e., Beijing Capital International Airport, Shanghai Pudong International Airport and Guangzhou Baiyun International Airport) by exploring a two-stage panel data modeling framework. Using OAG traffic analyser data between 2010 and 2017, the models are estimated by fixed-effects and systems of regression panel data methods. The results show that the spillovers of international transfer traffic at the “Big Three (B3)” have been mainly taken by the hub airports located outside China that have larger overlap rates with the B3. The secondary hub airports in China show limited capability to capture the spillovers of the B3. The spillover transfer traffic of the B3 spreads to different branches of geography. In specific: from Beijing Capital to Xiamen, Bangkok, and Dubai; from Shanghai Pudong to Kuala Lumpur, Seoul and Urumqi; from Guangzhou Baiyun to Hong Kong, Wuhan, Xi’an, Seoul, Kuala Lumpur, Istanbul, Singapore and Helsinki. This paper further discusses the necessity of China to develop its secondary hub airports to overtake the spillovers of the B3. If the overlap rates between the primary and secondary hub airports are large, the latter can play a role as complementary airports. Otherwise, the secondary hub airports can develop towards specialization to cover the regions that cannot be served by their primary counterparts. In the case of the spillovers of the B3 being captured by hubs located in other countries, the dominant carriers at the B3 can consider to establish strategic alliance cooperation with their dominant carriers.
ZHANG Shengrun , ZHENG Hailong , LI Tao , TANG Xiaowei , WANG Jiaoe . Research on congestion spillover effects of international transfer traffic on hub airports[J]. GEOGRAPHICAL RESEARCH, 2019 , 38(11) : 2716 -2729 . DOI: 10.11821/dlyj020190151
表1 2017年基于中转乘客量的三大机场与竞争枢纽机场航线重叠率Tab. 1 Overlap rate of transfer connections between the B3 and competitive hubs in 2017 |
区域与国家(个数) | 枢纽机场 | 航线重叠率 (%) | ||
---|---|---|---|---|
北京首都 | 上海浦东 | 广州白云 | ||
中国 (14) | 香港 (HKG) | 24.7 | 36.2 | 60.6 |
昆明 (KMG) | 6.7 | 5.1 | 44.6 | |
厦门 (XMN) | 44.0 | 46.6 | 63.2 | |
深圳 (SZX) | 60.0 | 71.1 | 86.5 | |
成都 (CTU) | 41.7 | 38.6 | 39.2 | |
乌鲁木齐 (URC) | 10.8 | 12.8 | 15.5 | |
青岛 (TAO) | 3.8 | 11.2 | 15.3 | |
重庆 (CKG) | 8.8 | 12.6 | 8.4 | |
武汉 (WUH) | 24.5 | 27.3 | 29.8 | |
福州 (FOC) | 3.4 | 8.5 | 15.5 | |
上海虹桥 (SEA) | 0.0 | 3.8 | 7.6 | |
西安 (XIY) | 47.1 | 45.6 | 44.1 | |
南京 (NKG) | 21.8 | 36.1 | 18.1 | |
杭州 (HGH) | 14.1 | 19.3 | 6.9 | |
亚洲 (4) | 首尔仁川 (ICN) | 62.4 | 74.9 | 33.3 |
曼谷 (BKK) | 10.8 | 81.3 | 42.5 | |
新加坡 (SIN) | 1.2 | 11.0 | 16.5 | |
吉隆坡 (KUL) | 1.3 | 1.3 | 29.8 | |
欧洲和 北美 (8) | 法兰克福 (FRA) | 34.5 | 16.3 | 0.2 |
阿姆斯特丹 (AMS) | 36.4 | 5.8 | — | |
莫斯科 (SVO) | 1.4 | — | — | |
巴黎戴高乐 (CDG) | 17.2 | 11.9 | 1.0 | |
赫尔辛基 (HEL) | 48.7 | 17.0 | 1.3 | |
伊斯坦布尔 (IST) | 8.9 | — | — | |
芝加哥奥黑尔 (ORD) | 4.0 | 9.4 | — | |
旧金山 (SFO) | 14.4 | 9.5 | — | |
中东 (2) | 迪拜 (DXB) | 16.3 | 0.03 | 0.02 |
多哈 (DOH) | 30.5 | 5.3 | — |
注:① 表中所示字母代表竞争枢纽机场的IATA三字代码;② 航线重叠率为作者基于OAG数据计算得到。 |
表2 中国机场两阶段面板数据模型估计结果Tab. 2 Results of the two-stage panel data estimation for Chinese airports |
北京首都溢出 | 上海浦东溢出 | 广州白云溢出 | N | R2 (%) | |||||
---|---|---|---|---|---|---|---|---|---|
中国 (14) | 香港 (HKG) | 0.770*** (0.030) | 0.068*** (0.015) | 0.006*** (0.001) | -0.196 (0.172) | -0.128** (0.042) | -0.839*** (0.148) | 49 | 89.6 |
昆明 (KMG) | 1.130*** (0.119) | 0.055** (0.025) | -0.003 (0.002) | -0.298* (0.176) | -0.001 (0.028) | 0.157 (0.173) | 34 | 93.6 | |
厦门 (XMN) | 1.041*** (0.068) | 0.020* (0.011) | 0.005*** (0.002) | -0.206** (0.100) | -0.037 (0.029) | -0.065 (0.099) | 30 | 94.2 | |
深圳 (SZX) | 1.596*** (0.209) | -0.012 (0.016) | 0.002 (0.001) | 0.012 (0.108) | 0.013 (0.017) | -0.080 (0.118) | 25 | 90.0 | |
成都 (CTU) | 0.943*** (0.092) | 0.008 (0.005) | 0.001* (0.001) | -0.000 (0.028) | -0.003 (0.012) | 0.030 (0.033) | 43 | 86.4 | |
乌鲁木齐 (URC) | 0.549*** (0.189) | -0.006 (0.011) | 0.002 (0.001) | -0.019 (0.068) | -0.066*** (0.024) | 0.171 (0.123) | 33 | 59.9 | |
青岛 (TAO) | 0.677 (0.450) | -0.006 (0.006) | 0.001 (0.001) | 0.013 (0.069) | 0.080 (0.047) | 0.001 (0.020) | 29 | 45.3 | |
重庆 (CKG) | 0.018 (0.069) | 0.010 (0.008) | 0.003** (0.001) | 0.014 (0.084) | -0.027* (0.014) | 0.101*** (0.036) | 30 | 87.6 | |
武汉 (WUH) | 0.762*** (0.085) | 0.002 (0.004) | 0.001*** (0.000) | -0.010 (0.024) | -0.006 (0.006) | -0.068*** (0.014) | 36 | 87.0 | |
福州 (FOC) | 1.039*** (0.231) | -0.009 (0.012) | 0.002* (0.001) | -0.097 (0.084) | -0.004 (0.032) | -0.004 (0.046) | 22 | 83.8 | |
上海虹桥 (SEA) | 0.226 (0.323) | -0.015 (0.061) | 0.000 (0.003) | 0.012 (0.152) | -0.036 (0.036) | 0.147 (0.381) | 14 | 19.4 | |
西安 (XIY) | 0.349 (0.213) | -0.010*** (0.003) | 0.002*** (0.001) | 0.035 (0.047) | 0.015 (0.014) | -0.055*** (0.018) | 31 | 81.3 | |
南京 (NKG) | 0.675*** (0.157) | 0.007** (0.003) | 0.001** (0.000) | -0.006 (0.020) | -0.006 (0.015) | 0.031 (0.018) | 30 | 87.6 | |
杭州 (HGH) | 0.921*** (0.104) | 0.000 (0.002) | 0.001** (0.000) | -0.016 (0.019) | 0.003 (0.005) | -0.026 (0.019) | 34 | 87.1 |
注: *** p<0.01, ** p<0.05, * p<0.1; 括号中显示修正后标准差。 |
表3 世界其他区域机场两阶段面板数据模型估计结果Tab. 3 Results of the two-stage panel data estimation for airports located outside of China |
北京首都溢出 | 上海浦东溢出 | 广州白云溢出 | N | R2 (%) | |||||
---|---|---|---|---|---|---|---|---|---|
亚洲 (4) | 首尔仁川 (ICN) | 0.536*** (0.091) | 0.051*** (0.013) | -0.003** (0.001) | -0.026 (0.059) | -0.341*** (0.054) | -0.237*** (0.031) | 56 | 59.8 |
曼谷 (BKK) | 1.002*** (0.048) | 0.034*** (0.011) | -0.002* (0.001) | -0.130** (0.063) | 0.007 (0.021) | -0.072 (0.081) | 42 | 95.6 | |
新加坡 (SIN) | 1.008*** (0.040) | 0.021*** (0.008) | -0.001* (0.001) | -0.050 (0.043) | -0.003 (0.012) | -0.176** (0.078) | 41 | 97.9 | |
吉隆坡 (KUL) | 0.153 (0.169) | 0.017 (0.020) | -0.005 (0.010) | -0.128 (0.153) | -0.546** (0.249) | -0.399*** (0.109) | 21 | 72.5 | |
欧洲和 北美 (8) | 法兰克福 (FRA) | 0.904*** (0.047) | 0.195*** (0.050) | -0.143** (0.058) | -0.047 (0.145) | 0.072 (0.096) | -0.679 (0.442) | 21 | 98.5 |
阿姆斯特丹 (AMS) | 0.106 (0.160) | 0.092* (0.024) | -0.041 (0.035) | 0.143 (0.073) | 0.003 (0.074) | -0.302 (0.271) | 21 | 61.8 | |
莫斯科 (SVO) | 1.056*** (0.068) | 0.047* (0.026) | -0.009 (0.062) | -0.126 (0.214) | 0.002 (0.048) | 0.105 (0.553) | 21 | 78.5 | |
巴黎戴高乐 (CDG) | 0.956*** (0.035) | 0.093*** (0.024) | -0.052* (0.029) | 0.096 (0.067) | 0.040 (0.048) | -0.400* (0.231) | 21 | 99.4 | |
赫尔辛基 (HEL) | 0.912*** (0.047) | 0.101*** (0.021) | -0.087*** (0.024) | -0.031 (0.064) | 0.089** (0.040) | -0.400** (0.182) | 21 | 98.0 | |
伊斯坦布尔 (IST) | 0.852*** (0.037) | 0.141*** (0.013) | -0.103*** (0.015) | 0.029 (0.043) | 0.018* (0.010) | -0.614*** (0.098) | 25 | 96.7 | |
芝加哥奥黑尔 (ORD) | 0.852*** (0.082) | -0.092 (0.066) | 0.171*** (0.060) | -0.113 (0.158) | -0.557 (0.223) | 1.751 (0.563) | 9 | 98.0 | |
旧金山 (SFO) | 0.422 (0.001) | 1.153 (0.001) | 0.435 (0.001) | -14.743 (0.001) | 14.586 (0.001) | 43.525 (0.001) | 7 | 98.0 | |
中东 (2) | 迪拜 (DXB) | 1.024*** (0.054) | 0.028 (0.032) | 0.003 (0.037) | -0.191** (0.092) | -0.028 (0.061) | 0.075 (0.215) | 28 | 98.2 |
多哈 (DOH) | 1.059*** (0.062) | 0.041** (0.019) | -0.015 (0.022) | 0.080 (0.059) | 0.016 (0.033) | -0.088 (0.129) | 28 | 98.3 |
注: *** p<0.01, ** p<0.05, * p<0.1; 括号中显示修正后标准差。 |
表4 三大机场国际中转客流拥堵溢出效应地理流向Tab. 4 The geographical direction of congestion spillover effects of the B3 airports |
三大机场 | 溢出流向机场 | 共同服务主要国际市场 | 市场重叠率 (%) | 国际中转乘客量变化(2017年 VS 2010年, %) |
---|---|---|---|---|
北京首都 | 厦门 | 中国-北美 | 44.0 | 206.9 |
曼谷 | 中国-西欧 | 10.8 | 123.1 | |
迪拜 | 中国-西欧 | 16.3 | 61.9 | |
上海浦东 | 香港 | 中国-东南亚 | 36.2 | 32.9 |
乌鲁木齐 | 中国-东欧、南亚 | 12.8 | 106.4 | |
吉隆坡 | 中国-东南亚 | 1.3 | 129.5 | |
首尔 | 中国-东北亚、北美、东南亚 | 74.9 | 15.1 | |
广州白云 | 香港 | 中国-东南亚 | 60.6 | 32.9 |
武汉 | 中国-东南亚 | 29.8 | 239.2 | |
西安 | 中国-西欧 | 44.1 | 527.0 | |
首尔 | 中国-东南亚、北美 | 33.3 | 15.1 | |
吉隆坡 | 中国-东南亚、南亚 | 29.8 | 129.5 | |
伊斯坦布尔 | 中国-西欧 | 0.0 | 255.5 | |
新加坡 | 中国-东南亚、南亚 | 16.5 | 77.2 | |
赫尔辛基 | 中国-西欧 | 1.3 | 58.9 |
注:溢出流向机场仅列出溢出效应显著性水平为1%和5%的机场。 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
中国民航局. 关于把控运行总量调整航班结构提升航班正点率的若干政策措施.http://www.caac.gov.cn/XWZX/MHYW/201709/t20170921_46876.html 2018-04-14.
[ Civil Aviation Administration of China. Policy on enhancing flight on-time rates and designing flight structure by controling for the total operation volume.http://www.caac.gov.cn/XWZX/MHYW/201709/t20170921_46876.html 2018-04-14.]
|
[8] |
|
[9] |
董雅晴, 路紫, 刘媛 , 等. 中国空中廊道划设与时空拥堵识别及其航线流量影响. 地理学报, 2018,73(10):2001-2013.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
王玫 . 基于国际市场的运输服务优化研究: 以中国大型机场的中转服务优化为例. 北京科技大学学报(社会科学版), 2013,29(4):105-112.
[
|
[14] |
王伟, 王成金 . 枢纽机场航班时刻资源配置的时空网络模式: 以北京首都国际机场为例. 地理学报, 2013,68(6):762-774.
[
|
[15] |
王姣娥, 王涵, 焦敬娟 . “一带一路”与中国对外航空运输联系研究. 地理科学进展, 2015,34(5):554-562.
[
|
[16] |
王成金, 金凤君 . 从航空国际网络看我国对外联系的空间演变. 经济地理, 2005,25(5):667-672.
[
|
[17] |
|
[18] |
黄洁, 王姣娥 . 枢纽机场的航班波体系结构及其喂给航线的空间格局研究. 地理科学, 2018,38(11):1749-1757.
[
|
[19] |
戴特奇, 张玉韩, 赵娟娟 . 中国民用运输机场的可达性溢出效应研究. 地理学报, 2013,68(12):1668-1677.
[
|
[20] |
|
[21] |
范月娇, 权春妮 . 物流通道的空间溢出效应检验: 基于中国11条物流通道的实证. 交通运输系统工程与信息, 2018,18(1):37-43.
[
|
[22] |
|
[23] |
|
[24] |
王姣娥, 金凤君, 孙炜 , 等. 中国机场体系的空间格局及其服务水平研究. 地理学报, 2006,81(8):829-838.
[
|
[25] |
王姣娥, 莫辉辉, 金凤君 . 中国航空网络空间结构的复杂性. 地理学报, 2009,64(8):899-910.
[
|
[26] |
|
[27] |
|
/
〈 |
|
〉 |