The econometric analysis of the effect of city housing prices on fertility rates:A study from cities of the Yangtze River Delta in China
Received date: 2020-11-04
Accepted date: 2021-03-18
Online published: 2021-11-10
Copyright
The nexus between housing prices and population has long been the hot topic for scholars in fields of humanities, economics, and geography. Taking 41 cities in the Yangtze River Delta as examples, this article explored the influence of housing prices on fertility rates with the panel data from 2008 to 2018. Employing the differential GMM (Dif-GMM) and Biased-corrected LSDV (LSDVC) approaches, we modeled the underlying mechanism at regional and sub-group levels. The result of Dif-GMM model indicated that the rocketing housing prices in the study area largely triggered the decline of fertility rates. The faster the housing price rose, the faster the fertility rate declined. Besides, by using the variable of housing price to income ratio, we measured the home affordability of residents in every city. The result indicated that the faster the home affordability decreased, the faster the fertility rate decreased. Furthermore, the result of LSDVC model shed further light on the heterogeneity of nexus across sub-groups. Specifically, the fertility rates in cities with medium or low housing prices were more vulnerable to the fluctuation of housing purchasing ability, while in cities with high or medium-high housing prices, the situation was opposite. Besides, different types of cities showed distinct variations in the fertility rates when facing changes of regional economic development, which depended on the income expectation and cost expectation brought by the economic development. Stemming from the aforementioned findings, we finally proposed some policy suggestions on how to increase people’ fertility intention. The primary one is to control the speed of housing prices rise. The second one is to improve the home affordability of residents through increasing housing subsidies or residents’ income. In addition, the regulation of rising housing price in cities with low or medium housing price should not be ignored. Instead, more targeted policies should be formulated in these regions, with a view to increasing residents’ overall willingness to have children and promoting sustainable population development in the whole region.
FANG Huifen , CHEN Jianglong , YUAN Feng , GAO Jinlong . The econometric analysis of the effect of city housing prices on fertility rates:A study from cities of the Yangtze River Delta in China[J]. GEOGRAPHICAL RESEARCH, 2021 , 40(9) : 2426 -2441 . DOI: 10.11821/dlyj020201069
表1 主要数据的描述性统计Tab. 1 The descriptive statistics of main data |
变量 | 样本量 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
粗出生率 | 451 | 11.11 | 2.99 | 5.99 | 22.58 |
城镇化率 | 451 | 58.07 | 12.60 | 29.10 | 89.60 |
房价 | 451 | 7437 | 5092 | 2282 | 41424 |
人均GDP | 451 | 50211 | 27788 | 6475 | 137870 |
城镇居民人均可支配收入 | 451 | 24825 | 7738 | 10771 | 53402 |
每十万人口中大学生数 | 451 | 2544 | 4322 | 206 | 24414 |
表2 城市的分组及标准Tab. 2 The classification and standards of cities |
城市类别 | 城市 | 2008—2018年房价平均水平(元/m2) |
---|---|---|
高房价城市 | 上海 南京 苏州 温州 杭州 宁波 舟山 丽水 金华 台州 | 8956~27063 |
中高房价城市 | 绍兴 无锡 南通 合肥 湖州 嘉兴 扬州 常州 衢州 泰州 | 5786~8105 |
中等房价城市 | 芜湖 镇江 徐州 铜陵 盐城 淮安 连云港 阜阳 马鞍山 宣城 | 4569~5751 |
低房价城市 | 安庆 六安 蚌埠 黄山 淮北 池州 滁州 宿州 宿迁 淮南 亳州 | 3646~4594 |
表4 基于LSDVC法的分组回归分析Tab. 4 The classification regression analysis based on LSDVC approach |
变量 | 变量符号 | 粗出生率(BR) | |||
---|---|---|---|---|---|
高房价城市 | 中高房价城市 | 中等房价城市 | 低房价城市 | ||
粗出生率(滞后一期) | L.BR | 0.485*** | 0.632*** | 0.652*** | 0.657*** |
(0.101) | (0.112) | (0.119) | (0.140) | ||
房价收入比 | HPIN | -0.051 | -0.092 | -0.519* | -0.470 |
(0.163) | (0.207) | (0.306) | (0.429) | ||
人均GDP | PG | 0.184*** | -0.093 | -0.034 | 0.079 |
(0.059) | (0.130) | (0.110) | (0.117) | ||
城镇化率 | UR | -0.058 | 0.609 | -0.234 | -0.173 |
(0.258) | (0.433) | (0.314) | (0.365) | ||
每十万人口中大学生数 | ED | -0.036 | -0.016 | 0.000 | -0.096 |
(0.072) | (0.055) | (0.104) | (0.069) | ||
样本量 | Sample Size | 100 | 100 | 100 | 110 |
个体数 | Number of Code | 10 | 10 | 10 | 11 |
注:括号中数字为估计参数相对应的稳健标准误;***、**、*分别代表在1%、5%和10%的水平上显著。 |
表3 基于差分GMM的整体回归分析Tab. 3 The overall regression analysis based on differential GMM |
变量 | 变量符号 | 粗出生率(BR) | |
---|---|---|---|
模型1 | 模型2 | ||
粗出生率(滞后一期) | L.BR | 0.371*** | 0.444*** |
(0.122) | (0.105) | ||
房价 | HP | -0.122*** | |
(0.043) | |||
房价(滞后一期) | L.HP | -0.120 | |
(0.073) | |||
城镇居民人均可支配收入 | IN | 0.169 | |
(0.227) | |||
房价收入比 | HPIN | -0.345** | |
(0.137) | |||
房价收入比(滞后一期) | L.HPIN | -0.251 | |
(0.123) | |||
城镇化率 | UR | -0.407 | -0.501** |
(0.295) | (0.271) | ||
每十万人口中大学生数 | ED | -0.029 | -0.038 |
(0.054) | (0.051) | ||
人均GDP | PG | 0.244 | 0.205** |
(0.211) | (0.079) | ||
常量 | Constant | 1.155 | 1.629** |
(0.889) | (0.669) | ||
样本量 | Sample Size | 369 | 369 |
Arellano-Bond test | AR(2)统计量 | 0.500 | 0.643 |
[Prob>z] | 0.617 | 0.521 | |
Sargan test | Sargan统计量 | 38.248 | 38.520 |
[Prob>chi2] | 0.174 | 0.166 | |
个体数 | Number of Code | 41 | 41 |
注:括号中数字为估计参数相对应的稳健标准误;***、**、*分别代表在1%、5%和10%的水平上显著。 |
真诚感谢匿名评审专家在论文评审中所付出的时间和精力,评审专家对本文城市等级分类研究、逻辑关系梳理以及模型方法的构建,乃至言语表述方面都给予了非常珍贵的修改意见,使本文获益匪浅。
[1] |
United Nations Department of Economic and Social Affairs. The world population prospects: 2019 Revision. (2019-06-17) [2021-02-23]. https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf
|
[2] |
世界银行公开数据(WBOD). 总生育率. ( 2019 -12-20) [ 2021-02-23]. https://data.worldbank.org.cn/indicator/SP.DYN.TFRT.IN?view=chart.
[World Bank Open Data. Total fertility rate.( 2019 -12-20) [ 2021-02-23]. https://data.worldbank.org.cn/indicator/SP.DYN.TFRT.IN?view=chart
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
谢洁玉, 吴斌珍, 李宏彬, 等. 中国城市房价与居民消费. 金融研究, 2012, (6):13-27.
[
|
[16] |
邵新建, 巫和懋, 江萍, 等. 中国城市房价的“坚硬泡沫”:基于垄断性土地市场的研究. 金融研究, 2012, (12):67-81.
[
|
[17] |
顾宝昌. 中国人口: 从现在走向未来. 国际经济评论, 2010, (6):95-111.
[
|
[18] |
王军, 王广州. 中国低生育水平下的生育意愿与生育行为差异研究. 人口学刊, 2016, 38(2):5-17.
[
|
[19] |
宋德勇, 刘章生, 弓媛媛. 房价上涨对城镇居民二孩生育意愿的影响. 城市问题, 2017, (3):67-72.
[
|
[20] |
郭玲, 姜晓妮. 高房价、低生育率:难道真是房价惹的祸:中国商品住宅价格对生育率的空间溢出效应研究. 现代财经, 2018, (11):34-48.
[
|
[21] |
吕碧君. 公共服务、房价上涨与妇女的二孩生育意愿. 武汉:华中科技大学博士学位论文, 2018:91-92.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
陈强. 高级计量经济学及Stata应用(第二版). 北京: 高等教育出版社, 2014: 300.
[
|
[31] |
万晓莉, 严予若, 方芳. 房价变化、房屋资产与中国居民消费:基于总体和调研数据的证据. 经济学(季刊), 2017, 16(1):525-544.
[
|
[32] |
|
[33] |
|
[34] |
鲁君四. 中国房地产业发展对经济增长的影响研究. 长春:吉林大学博士学位论文, 2017:121-125.
[
|
[35] |
张传勇. 劳动力流动, 房价上涨与城市经济收敛:长三角的实证分析. 产业经济研究, 2016, (3):82-90.
[
|
[36] |
吴威, 曹有挥, 曹卫东, 等. 长三角地区交通优势度的空间格局. 地理研究, 2011, 30(12):2199-2208.
[
|
[37] |
张京祥, 罗小龙, 殷洁. 长江三角洲多中心城市区域与多层次管治. 国际城市规划, 2008, 23(1):65-69.
[
|
[38] |
宋伟轩, 刘春卉. 长三角一体化区域城市商品住宅价格分异机理研究. 地理研究, 2018, 37(1):92-102.
[
|
[39] |
黄赜琳. 长三角区域经济增长的人口结构因素分析. 财经研究, 2012, 38(12):38-50.
[
|
[40] |
|
[41] |
任泽平. 全面二孩后反而出现生育断崖, 为什么不生?(2021-02-03) [2021-02-23]. http://finance.sina.com.cn/zl/china/2021-02-03/zl-ikftpnny3529450.shtml
[
|
[42] |
|
/
〈 |
|
〉 |