Research on the influence of 2022 Winter Olympic Games on the tourism destination image of Zhangjiakou: Based on UGC text analysis
Received date: 2022-07-04
Accepted date: 2023-01-16
Online published: 2023-02-22
The impact of mega-events on the tourism destinations image (TDI) has a time-series dynamic feature, and the analysis of the inner mechanism is conducive to promoting destination marketing and competitiveness. This paper adopted Python data mining technology and natural language processing technology (NLP) to crawl the travel reviews of well-known domestic travel websites and established a dataset based on long time series and large sample data. The analysis framework is constructed from the “cognitive-emotional-overall” dimensions to explore the temporal change of Zhangjiakou's TDI during the bidding period, preparation period and warm-up period of the 2022 Winter Olympic Games. In this way, the potential impact and mechanism of the Winter Olympics on the TDI in a special period and in a specific way can be analyzed. The results show that: (1) The composition elements of Zhangjiakou's TDI are becoming increasingly diversified and the effect of the Winter Olympics is becoming more and more significant. The key degree of ice and snow tourism image under the influence of the Winter Olympics is increasing, and it has experienced the refinement process of changing from vague to concrete image. Positive emotions are becoming more prevalent. (2) The Winter Olympic Games have a progressive influence on the TDI of Zhangjiakou City, which exerts its effect through the construction of tourism experience, the projection of image and the halo effect of brand perception. The Winter Olympics promote product innovation, infrastructure upgrade and service level improvement in Zhangjiakou, which will have a positive impact on the TDI by improving the visitor experience. This paper explores the dynamic impact path of the Games on the changing image of city tourism, which is a guide for host cities to change the TDI through festivals and post-event marketing.
XU Linlin , ZHOU Bin , YU Hu , ZHANG Pengfei . Research on the influence of 2022 Winter Olympic Games on the tourism destination image of Zhangjiakou: Based on UGC text analysis[J]. GEOGRAPHICAL RESEARCH, 2023 , 42(2) : 422 -439 . DOI: 10.11821/dlyj020220714
表1 不同旅游B2C平台数据量统计Tab. 1 Data volume statistics of different B2C tourism platforms |
数据类型 | 携程网 | 马蜂窝 | 去哪儿网 | 同程网 | 穷游网 |
---|---|---|---|---|---|
景点点评 | 3461 | 689 | 1100 | 502 | 470 |
游记 | 1773 | 258 | 270 | 85 | 201 |
注:搜索日期为2022年4月19日。 |
表2 三阶段关键词TOP20及TF-IDF值Tab. 2 TOP20 keywords and TF-IDF value in three periods |
序号 | 2015年前 | 2016—2019年 | 2020—2022年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
关键词 | TF-IDF值 | 关键词 | TF-IDF值 | 关键词 | TF-IDF值 | |||||
1 | 草原 | 0.0530 | 草原 | 0.0806(↑) | 草原 | 0.0744(↓) | ||||
2 | 高速 | 0.0286 | 景区 | 0.0270(↑) | 滑雪 | 0.0409(↑) | ||||
3 | 北京 | 0.0278 | 张家口 | 0.0263(↑) | 滑雪场 | 0.0341(↑) | ||||
4 | 张家口 | 0.0247 | 酒店 | 0.0249(↑) | 景区 | 0.0323(↑) | ||||
5 | 收费站 | 0.0220 | 公里 | 0.0219(↑) | 酒店 | 0.0314(↑) | ||||
6 | 景区 | 0.0192 | 天路 | 0.0194(↑) | 太舞 | 0.0282(↑) | ||||
7 | 张北 | 0.0176 | 高速 | 0.0191(↓) | 张家口 | 0.0244(↓) | ||||
8 | 门票 | 0.0175 | 坝上 | 0.0186(↑) | 小镇 | 0.0218(↑) | ||||
9 | 宾馆 | 0.0175 | 北京 | 0.0184(↓) | 崇礼 | 0.0210(↑) | ||||
10 | 坝上 | 0.0128 | 张北 | 0.0175(↓) | 雪道 | 0.0184(↑) | ||||
11 | 住宿 | 0.0119 | 自驾 | 0.0158(↑) | 自驾 | 0.0176(↑) | ||||
12 | 国道 | 0.0111 | 风景 | 0.0140(↑) | 北京 | 0.0172(↓) | ||||
13 | 时间 | 0.0111 | 桦皮岭 | 0.0134(↑) | 张北 | 0.0163(↓) | ||||
14 | 景色 | 0.0101 | 滑雪 | 0.0124(↑) | 公里 | 0.0157(↓) | ||||
15 | 内蒙 | 0.0099 | 住宿 | 0.0119(↓) | 天路 | 0.0155(↓) | ||||
16 | 行程 | 0.0098 | 门票 | 0.0112(↓) | 体验 | 0.0154(↑) | ||||
17 | 长城 | 0.0097 | 野狐岭 | 0.0107(↑) | 景点 | 0.0153(↑) | ||||
18 | 路况 | 0.0092 | 古城 | 0.0106(↑) | 坝上 | 0.0151(↓) | ||||
19 | 蔚县 | 0.0086 | 蔚县 | 0.0099(↑) | 高速 | 0.0133(↓) | ||||
20 | 旅游 | 0.0081 | 长城 | 0.0095(↓) | 风景 | 0.0131(↓) |
表4 主题聚类结果及权重Tab. 4 Topic clustering results and weights (单位:%) |
主题排序 | 申办期 | 筹备期 | 预热举办期 |
---|---|---|---|
主题1 | 草原风情(25.77) | 草原自驾(24.18) | 历史文化(22.06) |
主题2 | 历史文化(19.73) | 冰雪旅游(21.59) | 草原风情(18.52) |
主题3 | 营地户外(13.98) | 历史文化(20.19) | 冰雪运动(16.15) |
主题4 | 旅游服务(11.59) | 旅游交通(11.00) | 旅游服务(13.98) |
主题5 | 旅游交通(10.06) | 旅游服务(9.85) | 生态旅游(10.19) |
主题6 | 生态旅游(9.96) | 草原风情(8.37) | 地方美食(9.49) |
主题7 | 冰雪旅游(8.91) | 民俗文化(4.82) | 冰雪度假(8.80) |
真诚感谢匿名评审专家在论文评审中所付出的时间和精力,专家对本文结构、理论贡献、结论梳理等方面的修改意见,使本文获益匪浅。
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
马凌, 保继刚. 感知价值视角下的传统节庆旅游体验: 以西双版纳傣族泼水节为例. 地理研究, 2012, 31(2): 269-278.
[
|
[10] |
|
[11] |
袁超, 孔翔, 李鲁奇, 等. 基于游客用户生成内容数据的传统村落形象感知: 以徽州呈坎村为例. 经济地理, 2020, 40(8): 203-211.
[
|
[12] |
付业勤, 曹娜. 基于扎根理论量表开发的网络舆情对旅游地形象传播研究. 统计与决策, 2016, (20): 65-68.
[
|
[13] |
邬超, 邵秀英, 高楠. 旅游形象研究的知识图谱分析. 旅游导刊, 2019, 3(5): 84-99.
[
|
[14] |
陆利军, 廖小平. 基于UGC数据的南岳衡山旅游目的地形象感知研究. 经济地理, 2019, 39(12): 221-229.
[
|
[15] |
孙晓东, 倪荣鑫. 中国邮轮游客的产品认知、情感表达与品牌形象感知: 基于在线点评的内容分析. 地理研究, 2018, 37(6): 1159-1180.
[
|
[16] |
田逢军, 吴珊珊, 胡海胜, 等. 江西省城市旅游形象的网络化呈现. 经济地理, 2019, 39(6): 214-222.
[
|
[17] |
郑鹏, 李阿芳, 皮瑞. 大争之寺: 中美报纸媒介对少林寺形象表征差异. 世界地理研究, 2018, 27(6): 134-145.
[
|
[18] |
敖长林, 李凤佼, 许荔珊, 等. 基于网络文本挖掘的冰雪旅游形象感知研究: 以哈尔滨市为例. 数学的实践与认识, 2020, 50(1): 44-54.
[
|
[19] |
|
[20] |
王媛, 冯学钢, 孙晓东. 旅游地形象的时间演变与演变机制. 旅游学刊, 2014, 29(10): 20-30.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
陈朋, 王思懿, 李云, 等. 基于CIS理论的节事活动对城市形象塑造路径研究: 以长隆广州世界嘉年华为例. 中国商论, 2022, (4): 29-32.
[
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
杨泽生, 高菡. 新闻场域视角下奥运会电视传播研究: 以中央广播电视总台北京冬奥会节目为例. 新闻爱好者, 2021, (2): 82-84.
[
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
李勇, 陈晓婷, 刘沛林, 等. “认知-情感-整体”三维视角下的遗产TDI感知研究: 以湘江古镇群为例. 人文地理, 2021, 36(5): 167-176.
[
|
[54] |
张柳, 王晰巍, 黄博, 等. 基于LDA模型的新冠肺炎疫情微博用户主题聚类图谱及主题传播路径研究. 情报学报, 2021, 40(3): 234-244.
[
|
[55] |
|
[56] |
|
[57] |
|
[58] |
徐成龙, 刘东锋. 以海外游客视角分析北京奥运会对旅游目的地形象塑造的影响: 基于对网络旅游博客的内容分析. 湖北体育科技, 2018, 37(7): 586-590, 604.
[
|
[59] |
|
[60] |
|
[61] |
|
/
〈 |
|
〉 |