Tourism Geography

Spatio-temporal response and influencing factors of tourist flows to the leaf-yellow ornamental period of Chinese Populus Euphratica

  • ZHENG Chenrouyu , 1, 2 ,
  • LIU Jiaming , 1, 2 ,
  • ZHANG Shuying 1, 2 ,
  • REN Jiamin 3 ,
  • MA Shuang 4 ,
  • LIN Shiran 1, 2
Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS / Key Laboratory of Regional Sustainable Development Modeling, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. College of Geography and Environment, Shandong Normal University, Jinan 250358, China
  • 4. Institute of Agricultural Information and Economics, Shandong Academy of Agricultural Sciences, Jinan 250010, China

Received date: 2024-07-07

  Accepted date: 2025-04-24

  Online published: 2025-07-17

Abstract

The seasonal fluctuations in tourist flow caused by plant phenology observation in the context of global climate change are a hotspot in tourism geography research. The paper takes 9 large-scale tourism destinations of Populus Euphratica in China as the research area. Based on meteorological data, Weibo data, statistical data, and field research data, the paper uses LOWESS, PLS-SEM to extract the leaf-yellow ornamental period of Populus Euphratica and explore the spatio-temporal response characteristics and influencing factors of tourist flows from 2016 to 2020. Results show that: (1) The average duration of leaf-yellow ornamental period of Populus Euphratica is 27 days and suitable ornamental period covers 21 days. The leaf-yellow period is concentrated in mid-late September to mid-late October, or mid-early October to mid-early November, showing a spatial pattern of gradually extending from Haixi to southern Xinjiang. (2) After 2018, the tourist flow of Populus Euphratica increased rapidly, with Alxa and Bayingolin being the main concentration areas for tourist flows. The peak structure of tourist flows during the viewing period shows a single peak, double peaks, or three peaks. Tourist flow is more dependent on the regular dates of suitable viewing periods, rather than adapting to the actual natural viewing time. Legal holidays and tourism festivals can significantly advance the arrival of peak tourist periods, which is out of sync with the actual viewing period. (3) The tourist flow response during the leaf-yellow ornamental period is influenced by factors such as the viewing duration, meteorological conditions, product types, infrastructure, and economic support. Product types and economic support are significant positive factors for Populus Euphratica tourism. The research content and framework in this article can enrich the study of the relationship between plant phenology and tourism, and provide scientific references for adjusting phenological tourism service strategies in response to climate change.

Cite this article

ZHENG Chenrouyu , LIU Jiaming , ZHANG Shuying , REN Jiamin , MA Shuang , LIN Shiran . Spatio-temporal response and influencing factors of tourist flows to the leaf-yellow ornamental period of Chinese Populus Euphratica[J]. GEOGRAPHICAL RESEARCH, 2025 , 44(7) : 1955 -1973 . DOI: 10.11821/dlyj020240668

真诚感谢匿名评审专家在论文评审中所付出的时间和精力,评审专家对文献综述聚焦、研究方法选择、结论及讨论深化、行文表述的规范性和科学性等方面提出了宝贵的修改意见,使本文获益匪浅。

[1]
戴君虎, 高新月, 刘浩龙, 等. 物候学在旅游地理理论与实践中的应用基础和前景. 中国生态旅游, 2021, 11(2): 161-175.

DOI

[Dai Junhu, Gao Xinyue, Liu Haolong, et al. Application basis and future perspectives of phenology in the theory and practice of tourism geography. Journal of Chinese Ecotourism, 2021, 11(2): 161-175.]

DOI

[2]
Wu L Y, Shen X J, Lu X G, et al. Asymmetric effects of diurnal warming on carbon allocation to leaves of marsh wetlands on the Tibetan Plateau. International Journal of Digital Earth, 2024, 17(1): 1-16.

[3]
高新月, 戴君虎, 陶泽兴. 北京地区木本春季物候特征与生物学特性的关系. 生态学报, 2022, 42(24): 10253-10263.

[Gao Xinyue, Dai Junhu, Tao Zexing. Relationship between spring phenological traits and biological characteristics of woody plants in Beijing. Acta Ecologica Sinica, 2022, 42(24): 10253-10263.]

[4]
Zhao C Y, He X H, Qin J, et al. The effects of phenological change on Populus Euphratica under the background of climate change. Plant Growth Regulation, 2024, 102(1): 119-126.

[5]
Wanner A, Mostegl N, Pröbstl-Haider U. Walking on sunshine: Application of a choice experiment to understand impacts of climate change on tourism attractions. Journal of Outdoor Recreation and Tourism, 2024, 48: 100837.

[6]
Zhang W X, Liu P X, Feng Q R, et al. The spatiotemporal responses of Populus Euphratica to global warming in Chinese oases between 1960 and 2015. Journal of Geographical Sciences, 2018, 28(5): 579-594.

[7]
贺程.额济纳旗旅游业对农民增收的研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2021: 25-37.

[He Cheng.Research on the Effect of Tourism on the Increase of Farmers' Income in Ejina Banner. Hohhot: Master Dissertation of Inner Mongolia Agricultural University, 2021: 25-37.]

[8]
陈娟, 刘普幸. 胡杨叶黄期对气候变化的时空响应与区域差异. 干旱区研究, 2019, 36(1): 159-168.

[Chen Juan, Liu Puxing. Spatiotemporal response of leaf-yellow period of Populus Euphratica to climate change and its regional difference. Arid Zone Research, 2019, 36(1): 159-168.]

[9]
陶泽兴, 戴君虎. 中国常见木本植物春季展叶物候及叶冻害变化. 地理科学进展, 2023, 42(4): 766-781.

DOI

[Tao Zexing, Dai Junhu. Variations in spring leaf phenology and leaf freezing damage of common woody species in China. Progress in Geography, 2023, 42(4): 766-781.]

DOI

[10]
朱梦瑶, 戴君虎, 王焕炯, 等. 1951—2021年欧洲地区木本植物的格网物候数据集. 中国科学数据, 2024, 9(2): 243-254.

[Zhu Mengyao, Dai Junhu, Wang Huanjiong, et al. A dataset of gridded phenology of woody plants in Europe from 1951 to 2021. China Scientific Data, 2024, 9(2): 243-254.]

[11]
刘俊, 王胜宏, 金朦朦, 等. 基于微博大数据的2010—2018年中国桃花观赏日期时空格局研究. 地理科学, 2019, 39(9): 1446-1454.

DOI

[Liu Jun, Wang Shenghong, Jin Mengmeng, et al. Reconstruction of peach blossom-viewing date of China using weibo big data. Scientia Geographica Sinica, 2019, 39(9): 1446-1454.]

DOI

[12]
刘俊, 王胜宏, 余云云, 等. 基于微博大数据的气候变化对中国赏樱旅游的影响. 地理学报, 2022, 77(9): 2292-2307.

DOI

[Liu Jun, Wang Shenghong, Yu Yunyun, et al. The impact of climate change on cherry blossom-viewing tourism based on Weibo big data in China. Acta Geographica Sinica, 2022, 77(9): 2292-2307.]

DOI

[13]
Wang L, Ning Z Z, Wang H J, et al. Impact of climate variability on flowering phenology and its implications for the schedule of blossom festivals. Sustainability, 2017, 9(7): 1127.

[14]
Hur J, Ahn J B. Seasonal prediction of regional surface air temperature and first-flowering date over South Korea. International Journal of Climatology, 2015, 35(15): 4791-4801.

[15]
徐媛媛, 周武忠, 周之澄. 中国花卉旅游研究进展. 东南大学学报(哲学社会科学版), 2022, 24(6): 98-113, 148.

[Xu Yuanyuan, Zhou Wuzhong, Zhou Zhicheng. The status quo of flower tourism research in China. Journal of Southeast University (Philosophy and Social Science), 2022, 24(6): 98-113, 148.]

[16]
Visa-Barbosa M, Carnice-Mur M, Sánchez-Meza M, et al. The spectacle of flowering. The media in the creation of a tourist image in a rural area. Profesional De La Informacion, 2024, 33(2): 1699-2407.

[17]
李磊, 陶卓民, 陆林, 等. 贵州省避暑旅游流网络结构特征及其影响因素. 地理研究, 2021, 40(11): 3208-3224.

DOI

[Li Lei, Tao Zhuomin, Lu Lin, et al. Structural characteristics and influencing factors of summer tourism flow network in Guizhou province. Geographical Research, 2021, 40(11): 3208-3224.]

[18]
王坤, 陈祥泰, 黄震方. 旅游流网络结构韧性特征变化及其影响因素: 以贵州省为例. 经济地理, 2024, 44(3): 229-240.

DOI

[Wang Kun, Chen Xiangtai, Huang Zhenfang. Change of structural resilience characteristics of tourism flow network and its influencing factors: A case study of Guizhou Province. Economic Geography, 2024, 44(3): 229-240.]

[19]
Chen J, Ying Z H, Zhang C H, et al. Forecasting tourism demand with search engine data: A hybrid CNN-BiLSTM model based on Boruta feature selection. Information Processing & Management, 2024, 61(3): 103699.

[20]
余向洋, 张圆刚, 朱国兴, 等. 基于熵测度方法的旅游季节性研究. 地理科学进展, 2019, 38(8): 1240-1247.

DOI

[Yu Xiangyang, Zhang Yuangang, Zhu Guoxing, et al. Tourism seasonality based on entropy measuring. Progress in Geography, 2019, 38(8): 1240-1247.]

DOI

[21]
Zhang J, Yu Z L, Miao C H, et al. Cultural tourism weakens seasonality: Empirical analysis of Chinese tourism cities. Land, 2022, 11(2): 308.

[22]
Huang J, Huang A M, Wang L M. Intelligent video surveillance of tourist attractions based on virtual reality technology. IEEE Access, 2020, 8: 159220-159233.

[23]
Tan Y W, Yang L Y, Liu Y, et al. How does air quality affect tourist travel volume and destination preference? An analysis based on mobile tracking data. Current Issues in Tourism, 2023, 26(16): 2629-2646.

[24]
陆保一, 韦俊峰, 明庆忠, 等. 基于知识图谱的中国旅游大数据应用研究进展. 经济地理, 2022, 42(1): 230-240.

DOI

[Lu Baoyi, Wei Junfeng, Ming Qingzhong, et al. Research progress of tourism big data application in China based on knowledge map. Economic Geography, 2022, 42(1): 230-240.]

DOI

[25]
Wang S H, Yu Y Y, Chen J Q, et al. Impact of climate change on cherry blossom viewing tourism: Analysis and simulation based on Weibo proxy data. Current Issues in Tourism, 2023, 26(5): 718-734.

[26]
魏庆莒. 胡杨. 北京: 中国林业出版社, 1990: 7-21.

[Wei Qingju. Diversiform-leaved Poplar. Beijing: China Forestry Publishing House, 1990: 7-21.]

[27]
魏学, 石岚, 谷新波. 1960—2017年额济纳胡杨林观赏期旅游气候舒适度分析. 沙漠与绿洲气象, 2019, 13(5): 94-99.

[Wei Xue, Shi Lan, Gu Xinbo. Analysis on tourism climatic comfort of Populus Euphratica forest during ornamental period in Ejina banner from 1960 to 2017. Desert and Oasis Meteorology, 2019, 13(5): 94-99.]

[28]
Butler R W. Seasonality in tourism:Issues and implications// Baum T, Lundtorp S. Seasonality in Tourism. Amsterdam: Elsevier, 2001: 5-21.

[29]
宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 47-55.

[Wan Minwei, Liu Xiuzhen. China's National Phenological Observation Criterion. Beijing: Science Press, 1979: 47-55.]

[30]
中国天气网.沙雅2021年胡杨林观赏期预报. (2021-10-12) [2024-03-28]. http://xj.weather.com.cn/xjsy/tqyw/3498078.shtml.

[ China Weather Network.Shaya Populus Euphratica forest viewing season forecast for 2021. (2021-10-12) [2024-03-28]. http://xj.weather.com.cn/xjsy/tqyw/3498078.shtml.]

[31]
额济纳旗文化旅游广电局. 额济纳旗胡杨林景色专题预报(10月17日). (2024-10-17) [2025-01-25]. https://mp.weixin.qq.com/s/e4-xGuyl09XxFa2WPVeA2Q.

[ Ejina Banner Culture, Tourism, and Radio-TV Bureau. Special forecast for Ejina Banner Populus Euphratica forest scenery (October 17th). (2024-10-17) [2025-01-25]. https://mp.weixin.qq.com/s/e4-xGuyl09XxFa2WPVeA2Q.]

[32]
新疆维吾尔自治区林业和草原局. 小石榴说科普·山水林田湖草沙之林丨盯紧“胡杨时间” 邂逅满眼金黄. (2023-12-06) [2023-12-10]. https://lcj.xinjiang.gov.cn/lcj/c114729/202312/3caa85ab9fbf4f37959fca6113c72a75.shtml.

[ Forestry and Grassland Bureau of Xinjiang. Little Pomegranate Talks about Science Popularization: The Forests in the Community of Mountains, Rivers, Forests, Farmlands, Lakes, Grasslands and Deserts | Observing the Ornamental Period of Populus Euphratica. (2023-12-06) [2023-12-10]. https://lcj.xinjiang.gov.cn/lcj/c114729/202312/3caa85ab9fbf4f37959fca6113c72a75.shtml.]

[33]
中国国家标准化管理委员会. 风力等级标准: GB/T 28591—2012. 北京: 中国标准出版社, 2012.

[ Standardization Administration of the People's Republic of China. Beijing: Standards Press of China, 2012.]

[34]
Zhao H Q, Chen W K, Zhang C, et al. Rapid estimation of seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program (LOWESS). Natural Hazards and Earth System Sciences, 2023, 23(9): 3031-3050.

[35]
Tenenhaus M, Vinzi V E, Chatelin Y M, et al. PLS path modeling. Computational Statistics & Data Analysis, 2005, 48(1): 159-205.

[36]
Sousa-Zomer T T, Neely A, Martinez V. Digital transforming capability and performance: A microfoundational perspective. International Journal of Operations & Production Management, 2020, 40(7/8): 1095-1128.

[37]
李江风. 新疆气候. 北京: 气象出版社, 1991: 74-93.

[Li Jiangfeng. Xinjiang Climate. Beijing: China Meteorological Press, 1991: 74-93. ]

[38]
阿帕尔·肉孜, 叶尔克江·霍依哈孜, 李奇, 等. 新疆温度精细化时空变化特征分析. 湖北农业科学, 2022, 61(15): 34-41.

[Apar Ruzi, Erkejan Hoyhazi, Li Qi, et al. Analysis on temporal and spatial variation characteristics of temperature refinement in Xinjiang. Hubei Agricultural Sciences, 2022, 61(15): 34-41.]

[39]
邵海雁, 靳诚, 陆玉麒, 等. 长江经济带虚拟旅游流对高铁建设的响应格局及其驱动机理. 地理研究, 2024, 43(3): 791-808.

DOI

[Shao Haiyan, Jin Cheng, Lu Yuqi, et al. Response pattern and driving mechanism of virtual tourism flow to high-speed rail construction in the Yangtze River Economic Belt. Geographical Research, 2024, 43(3): 791-808.]

[40]
袁成鑫, 李永花, 赵小艳, 等. 基于综合旅游气候指数的青海省东北部旅游气候舒适度评价. 气象与环境科学, 2022, 45(6): 67-75.

[Yuan Chengxin, Li Yonghua, Zhao Xiaoyan, et al. Evaluation of tourism climate comfort level in northeastern Qinghai Province based on integrated tourism climate index. Meteorological and Environmental Sciences, 2022, 45(6): 67-75.]

[41]
卢长宝, 张羽, 王储. 微旅游代表性形式网络关注度时空特征及其影响因素. 地域研究与开发, 2024, 43(5): 67-73, 87.

DOI

[Lu Changbao, Zhang Yu, Wang Chu. Spatio-temporal characteristics and influencing factors of online attention to representative forms of micro-tourism. Areal Research and Development, 2024, 43(5): 67-73, 87.]

DOI

[42]
孙影影, 石伟英, 王伟, 等. 黄河流域A级旅游景区时空演变特征及影响因素分析. 河南大学学报(自然科学版), 2023, 53(4): 440-450.

[Sun Yingying, Shi Weiying, Wang Wei, et al. Analysis of spatio-temporal evolution characteristics and influencing factors of A-level scenic spots in the Yellow River Basin. Journal of Henan University (Natural Science), 2023, 53(4): 440-450.]

[43]
翁钢民, 李凌雁. 中国旅游与文化产业融合发展的耦合协调度及空间相关分析. 经济地理, 2016, 36(1): 178-185.

[Weng Gangmin, Li Lingyan. The coupling coordination degree and spatial correlation analysis on integrational development of tourism industry and cultural industry in China. Economic Geography, 2016, 36(1): 178-185.]

[44]
刘赛, 张圆刚. 山东省露营地空间布局及组态影响研究. 地理研究, 2024, 43(5): 1247-1266.

DOI

[Liu Sai, Zhang Yuangang. Spatial layout and configuration influence of campsites in Shandong province. Geographical Research, 2024, 43(5): 1247-1266.]

[45]
刘安乐, 杨承玥, 明庆忠, 等. 中国文化产业与旅游产业协调态势及其驱动力. 经济地理, 2020, 40(6): 203-213.

DOI

[Liu Anle, Yang Chengyue, Ming Qingzhong, et al. Spatial-temporal coordination and driving forces of provincial culture industry and tourism industry in China. Economic Geography, 2020, 40(6): 203-213.]

DOI

[46]
丁志伟, 马芳芳, 张改素. 基于抖音粉丝量的中国城市网络关注度空间差异及其影响因素. 地理研究, 2022, 41(9): 2548-2567.

DOI

[Ding Zhiwei, Ma Fangfang, Zhang Gaisu. Spatial differences and influencing factors of urban network attention by Douyin fans in China. Geographical Research, 2022, 41(9): 2548-2567.]

[47]
阮文奇, 张舒宁, 李勇泉, 等. 中国赴泰旅游需求时空分异及其影响因素. 旅游学刊, 2019, 34(5): 76-89.

[Ruan Wenqi, Zhang Shuning, Li Yongquan, et al. Spatiotemporal differentiation and influencing factors of Chinese's tourism demand to Thailand. Tourism Tribune, 2019, 34(5): 76-89.]

[48]
刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用. 5版. 北京: 科学出版社, 2010: 169-175.

[Liu Sifeng, Dang Yaoguo, Fang Zhigeng, et al. Grey System Theory and Its Application. 5th ed. Beijing: Science Press, 2010: 169-175.]

Outlines

/