地理研究 ›› 2020, Vol. 39 ›› Issue (2): 257-271.doi: 10.11821/dlyj020181124
盛彦文1, 骆华松2, 宋金平1(), 赵金丽3, 张学波4
收稿日期:
2018-10-16
修回日期:
2019-06-08
出版日期:
2020-02-20
发布日期:
2020-05-20
通讯作者:
宋金平
作者简介:
盛彦文(1990- ),男,湖南株洲人,博士研究生,研究方向为城市与区域发展。E-mail: shengyanwen31@163.com
基金资助:
SHENG Yanwen1, LUO Huasong2, SONG Jinping1(), ZHAO Jinli3, ZAHNG Xuebo4
Received:
2018-10-16
Revised:
2019-06-08
Online:
2020-02-20
Published:
2020-05-20
Contact:
SONG Jinping
摘要:
作为经济发展的战略核心区域,东部沿海城市群的创新效率关系到创新驱动发展战略的实施和创新型国家建设。基于东部沿海五大城市群创新投入和产出面板数据,引入随机前沿生产函数测度2001—2015年五大城市群的创新效率,并利用空间Durbin模型定量分析创新效率的空间溢出效应。结果表明:① 2001年以来,五大城市群的创新效率均呈现稳定增长的趋势;② 京津冀创新效率增长缓慢,山东半岛城市群创新效率的提升幅度最大,长三角创新效率的提升幅度和均值仅次于山东半岛和京津冀城市群,而城市群核心城市虽然创新资源投入较多,但创新效率偏低;③ 经济发展水平、集聚经济、外商投资、劳动力素质、政府资助、基础设施、产业结构和高新技术产业对城市群创新效率有直接作用和溢出效应。
盛彦文, 骆华松, 宋金平, 赵金丽, 张学波. 中国东部沿海五大城市群创新效率、影响因素及空间溢出效应[J]. 地理研究, 2020, 39(2): 257-271.
SHENG Yanwen, LUO Huasong, SONG Jinping, ZHAO Jinli, ZAHNG Xuebo. Evaluation, influencing factors and spatial spillover of innovation efficiency in five major urban agglomerations in coastal China[J]. GEOGRAPHICAL RESEARCH, 2020, 39(2): 257-271.
表1
随机前沿生产函数估计结果"
京津冀城市群 | 山东半岛城市群 | 长三角城市群 | 海峡西岸城市群 | 珠三角城市群 | |
---|---|---|---|---|---|
常数项 | -1.547 | 3.439 | -3.041 | 0.051 | 1.288 |
(-4.424)*** | (1.012) | (-2.408)** | (0.071) | (3.769)*** | |
LnL | 0.028 | 0.229 | 0.315 | 0.182 | 0.071 |
(0.675) | (2.158)** | (1.892)* | (1.450) | (0.980) | |
LnK | 0.462 | 0.413 | 0.233 | 0.204 | 0.309 |
(4.639)*** | (3.848)*** | (1.258) | (1.702)* | (4.190)*** | |
LnKS | 0.295 | -0.145 | 0.492 | 0.384 | 0.283 |
(3.337)*** | (-0.671) | (3.133)*** | (3.612)*** | (4.961)*** | |
σ2 | 0.590 | 0.587 | 0.587 | 0.889 | 0.697 |
(2.263)** | (2.694)*** | (2.397)** | (2.704)*** | (2.083)** | |
γ | 0.828 | 0.733 | 0.767 | 0.700 | 0.939 |
(10.476)*** | (1.792)* | (7.909)*** | (6.227)*** | (30.471)*** | |
η | 0.019 | 0.102 | 0.070 | 0.059 | 0.050 |
(2.197)** | (2.949)*** | (3.600)*** | (5.010)*** | (9.568)*** | |
LR | 95.828*** | 68.592*** | 231.125*** | 144.006*** | 229.821*** |
表2
空间计量模型检验"
地理距离权重矩阵 | 经济距离权重矩阵 | 相互作用权重矩阵 | ||||
---|---|---|---|---|---|---|
P值 | P值 | P值 | ||||
LM-lag test | 36.636 | 0.000 | 11.511 | 0.001 | 21.600 | 0.000 |
R-LM-lag test | 34.102 | 0.000 | 14.833 | 0.000 | 25.371 | 0.000 |
LM-err-test | 14.040 | 0.000 | 3.817 | 0.051 | 6.425 | 0.011 |
R-LM-err-test | 11.505 | 0.001 | 7.138 | 0.008 | 10.195 | 0.001 |
Moran's I | 0.087 | 0.000 | 0.052 | 0.033 | 0.060 | 0.006 |
Wald-lag test | 261.209 | 0.000 | 58.481 | 0.000 | 270.393 | 0.000 |
LR-lag test | 232.302 | 0.000 | 52.387 | 0.000 | 237.997 | 0.000 |
Wald-err test | 210.702 | 0.000 | 136.845 | 0.000 | 232.282 | 0.000 |
LR-err test | 249.412 | 0.000 | 279.729 | 0.000 | 254.098 | 0.000 |
Hausman test | 613.427 | 0.000 | 60.083 | 0.000 | 698.885 | 0.000 |
表3
空间Durbin模型估计结果"
地理距离权重矩阵 | 经济距离权重矩阵 | 相互作用权重矩阵 | ||||
---|---|---|---|---|---|---|
t-statistic | t-statistic | t-statistic | ||||
Ln GDP | 0.153 | (9.711)*** | -0.001 | (-0.156) | 0.160 | (10.126)*** |
Ln URB | 0.060 | (5.060)*** | -0.009 | (-2.873)*** | 0.067 | (5.777)*** |
Ln FDI | -0.001 | (-0.130) | -0.004 | (-2.173)** | -0.003 | (-0.301) |
Ln GOV | 0.008 | (0.661) | 0.005 | (2.820)*** | 0.008 | (0.711) |
Ln LAB | -0.037 | (-4.129)*** | -0.005 | (-1.422) | -0.044 | (-4.875)*** |
Ln BAS | 0.093 | (5.996)*** | 0.003 | (1.409) | 0.088 | (5.715)*** |
Ln INDU | 0.154 | (3.955)*** | 0.012 | (1.068) | 0.129 | (3.334)*** |
Ln HIGH | -0.016 | (-6.366)*** | -0.003 | (-4.416)*** | -0.015 | (-6.025)*** |
W | 0.015 | (0.613) | 0.043 | (4.709)*** | -0.025 | (-1.097) |
W | 0.071 | (3.996)*** | -0.003 | (-0.546) | 0.071 | (3.924)*** |
W | -0.086 | (-6.560)*** | -0.012 | (-3.557)*** | -0.099 | (-7.269)*** |
W | -0.017 | (-1.128) | -0.009 | (-4.121)*** | -0.012 | (-0.833) |
W | -0.035 | (-2.244)** | -0.008 | (-1.520) | -0.044 | (-2.740)*** |
W | -0.038 | (-1.646) | 0.001 | (0.302) | -0.024 | (-1.117) |
W | -0.637 | (-10.921)*** | -0.012 | (-0.746) | -0.510 | (-9.585)*** |
W | 0.003 | (0.482) | 0.001 | (1.417) | 0.011 | (1.904)* |
0.128 | (2.899)*** | 0.759 | (45.847)*** | 0.093 | (2.129)** | |
R2 | 0.426 | 0.992 | 0.423 | |||
log-likelihhod | 269.199 | 2047.535 | 267.893 |
表4
直接效应与间接效应估计"
地理距离权重矩阵 | 经济距离权重矩阵 | 相互作用权重矩阵 | ||||
---|---|---|---|---|---|---|
直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | |
Ln GDP | 0.154 | 0.040 | 0.019 | 0.156 | 0.160 | -0.011 |
(9.846)*** | (1.518) | (2.462)** | (8.015)*** | (10.187)*** | (-0.454) | |
Ln URB | 0.062 | 0.088 | -0.014 | -0.036 | 0.069 | 0.083 |
(5.421)*** | (5.010)*** | (-3.026)*** | (-1.731)* | (5.883)*** | (4.491)*** | |
Ln FDI | -0.004 | -0.096 | -0.011 | -0.054 | -0.005 | -0.108 |
(-0.450) | (-7.005)*** | (-4.139)*** | (-4.472)*** | (-0.577) | (-7.518)*** | |
Ln GOV | 0.007 | -0.018 | 0.003 | -0.019 | 0.008 | -0.013 |
(0.570) | (-1.060) | (1.607) | (-3.457)*** | (0.706) | -(0.833) | |
Ln LAB | -0.038 | -0.045 | -0.010 | -0.041 | -0.045 | -0.052 |
(-4.239)*** | (-2.701)*** | (-2.493)*** | (-2.536)*** | (-4.829)*** | (-3.081)*** | |
Ln BAS | 0.092 | -0.030 | 0.005 | 0.013 | 0.088 | -0.016 |
(5.995)*** | (-1.241) | (1.520) | (0.864) | (5.817)*** | (-0.756) | |
Ln INDU | 0.135 | -0.689 | 0.011 | -0.012 | 0.118 | -0.540 |
(3.568)*** | (-10.891)*** | (0.752) | (-0.209) | (3.041)*** | (-9.604)*** | |
Ln HIGH | -0.016 | 0.001 | -0.003 | -0.002 | -0.015 | 0.011 |
(-6.457)*** | (0.111) | (-3.351)*** | (-0.516) | (-5.778)*** | (1.641) |
表5
空间滞后、空间误差及因变量滞后一期的空间Durbin模型回归结果"
地理距离权重矩阵 | 经济距离权重矩阵 | 相互作用权重矩阵 | |||||||
---|---|---|---|---|---|---|---|---|---|
SAR | SEM | SDM | SAR | SEM | SDM | SAR | SEM | SDM | |
Ln GDP | 0.087*** | 0.090*** | 0.155*** | 0.009 | -0.004 | -0.005 | 0.109*** | 0.114*** | 0.162*** |
Ln URB | 0.043*** | 0.044*** | 0.055*** | -0.005* | -0.006** | -0.007** | 0.1*** | 0.098*** | 0.062*** |
Ln FDI | -0.044*** | -0.045*** | 0.001 | -0.005*** | -0.002 | -0.004** | -0.037*** | -0.032*** | -0.001 |
Ln GOV | 0.022** | 0.029*** | 0.006 | 0.004** | 0.006*** | 0.006*** | 0.013 | 0.012 | 0.007 |
Ln LAB | -0.046*** | -0.047*** | -0.039*** | -0.003 | -0.003 | -0.001 | -0.036*** | -0.037*** | -0.045*** |
Ln BAS | 0.048*** | 0.051*** | 0.09*** | 0.003 | 0.002 | 0.002 | 0.1*** | 0.108*** | 0.085*** |
Ln INDU | -0.165*** | -0.152*** | 0.16*** | 0.02* | 0.013 | 0.029** | 0.13*** | 0.151*** | 0.134*** |
Ln HIGH | -0.007** | -0.007** | -0.015*** | -0.003*** | -0.003*** | -0.003*** | -0.013*** | -0.014*** | -0.015*** |
W | 0.008 | 0.061*** | -0.033 | ||||||
W | 0.069*** | -0.006 | 0.069*** | ||||||
W | -0.088*** | -0.014*** | -0.102*** | ||||||
W | -0.013 | -0.008*** | -0.009 | ||||||
W | -0.035** | -0.003 | -0.043*** | ||||||
W | -0.04* | 0.001 | -0.023 | ||||||
W | -0.608*** | -0.001 | -0.483*** | ||||||
W | 0.004 | -0.001 | 0.012** | ||||||
0.215*** | 0.130*** | 0.783*** | 0.757*** | 0.153*** | 0.093*** | ||||
0.173*** | 0.8*** | 0.156*** | |||||||
R-squared | 0.259 | 0.220 | 0.413 | 0.992 | 0.969 | 0.993 | 0.327 | 0.308 | 0.412 |
log-likelihood | 153.021 | 144.501 | 256.275 | 2035.774 | 2034.869 | 1975.161 | 197.734 | 195.529 | 256.076 |
表6
因变量滞后一期的空间Durbin模型直接效应与间接效应估计"
地理距离权重矩阵 | 经济距离权重矩阵 | 相互作用权重矩阵 | ||||
---|---|---|---|---|---|---|
直接效应 | 间接效应 | 直接效应 | 间接效应 | 直接效应 | 间接效应 | |
Ln GDP | 0.157*** | 0.031 | 0.161*** | -0.020 | 0.023** | 0.209*** |
Ln URB | 0.058*** | 0.085*** | 0.063*** | 0.081*** | -0.013** | -0.043* |
Ln FDI | -0.003 | -0.098*** | -0.004 | -0.110*** | -0.012*** | -0.062*** |
Ln GOV | 0.006 | -0.015 | 0.007 | -0.009 | 0.004 | -0.015 |
Ln LAB | -0.040*** | -0.045** | -0.046*** | -0.050*** | -0.002 | -0.011 |
Ln BAS | 0.090*** | -0.033 | 0.084*** | -0.016 | 0.003 | 0.006 |
Ln INDU | 0.141*** | -0.657*** | 0.125*** | -0.507*** | 0.038** | 0.071 |
Ln HIGH | -0.016*** | 0.002 | -0.015*** | 0.012 | -0.005*** | -0.011** |
[1] | 白俊红, 王林东 . 创新驱动是否促进了经济增长质量的提升?. 科学学研究, 2016,34(11):1725-1735. |
[ Bai Junhong, Wang Lindong . Does the innovation driven promote the improvement of economic growth quality? Studies in Science of Science, 2016,34(11):1725-1735.] | |
[2] | Tidd J, Bessant J, Pavitt K . Managing Innovation: Integrating Technological, Market and Organizational Change. Chichester: John Wiley & Sons Ltd, 2005. |
[3] | Cruz-Cázares C, Bayona-Sáez C, García-Marco T . You can't manage right what you can't measure well: Technological innovation efficiency. Research Policy, 2013,42(6-7):1239-1250. |
[4] | Fritsch M, Slavtchev V . Determinants of the efficiency of regional innovation systems. Regional Studies, 2011,45(7):905-918. |
[5] | Sharma S, Thomas V J . Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 2008,76(3):483-501. |
[6] | Guan J, Chen K . Modeling the relative efficiency of national innovation systems. Research Policy, 2012,41(1):102-115. |
[7] | Bai J . On regional innovation efficiency: Evidence from panel data of China's different provinces. Regional Studies, 2013,47(5):773-788. |
[8] | Fritsch M . Cooperation and the efficiency of regional R&D activities. Cambridge Journal of Economics, 2004,28(6):829-846. |
[9] | Guan J, Chen K . Measuring the innovation production process: A cross-region empirical study of China's high-tech innovations. Technovation, 2010,30(5-6):348-358. |
[10] | 朱有为, 徐康宁 . 中国高技术产业研发效率的实证研究. 中国工业经济, 2006, ( 11):38-45. |
[ Zhu Youwei, Xu Kangning . The empirical research on R&D efficiency of Chinese high-tech industries. China Industrial Economics, 2006, ( 11):38-45.] | |
[11] | 董晓庆, 赵坚, 袁朋伟 . 国有企业创新效率损失研究. 中国工业经济, 2014, ( 2):97-108. |
[ Dong Xiaoqing, Zhao Jian, Yuan Pengwei . Research on innovation efficiency loss of state-owned enterprises. China Industrial Economics, 2014, ( 2):97-108.] | |
[12] | 白俊红, 蒋伏心 . 协同创新、空间关联与区域创新绩效. 经济研究, 2015, ( 7):174-187. |
[ Bai Junhong, Jiang Fuxin . Synergy innovation, spatial correlation and regional innovation performance. Economic Research Journal, 2015, ( 7):174-187.] | |
[13] | Chen K, Kou M . Staged efficiency and its determinants of regional innovation systems: A two-step analytical procedure. The Annals of Regional Science, 2014,52(2):627-657. |
[14] | 李习保 . 区域创新环境对创新活动效率影响的实证研究. 数量经济技术经济研究, 2007, ( 8):13-24. |
[ Li Xibao . An empirical analysis of the effect of institutional factors on regional innovation performance. The Journal of Quantitative & Technical Economics, 2007, ( 8):13-24.] | |
[15] | 刘和东 . 中国区域研发效率及其影响因素研究: 基于随机前沿函数的实证分析. 科学学研究, 2011,29(4):548-556. |
[ Liu Hedong . Research on regional R&D efficiency and its influencing factors: Empirical analysis based on Stochastic Frontier Function. Studies in Science of Science, 2011,29(4):548-556.] | |
[16] | Broekel T . Do cooperative research and development (R&D) subsidies stimulate regional innovation efficiency?. Evidence from Germany. Regional Studies, 2015,49(7):1087-1110. |
[17] | 赵增耀, 章小波, 沈能 . 区域协同创新效率的多维溢出效应. 中国工业经济, 2015, ( 1):32-44. |
[ Zhao Zengyao, Zhang Xiaobo, Sheng Neng . Multidimensional spillover effect of regional cooperative innovation efficiency. China Industrial Economics, 2015, ( 1):32-44.] | |
[18] | 方创琳, 王振波, 马海涛 . 中国城市群形成发育规律的理论认知与地理学贡献. 地理学报, 2018,73(4):651-665. |
[ Fang Chuanglin, Wang Zhenbo, Ma Haitao . The theoretical cognition of the development law of China's urban agglomeration and academic contribution. Acta Geographica Sinica, 2018,73(4):651-665.] | |
[19] | Lakshmanan T R, Anderson W P, Song Y . Rise of Megalopolis as A Mega Knowledge Region: Interaction of Innovation in Transport, Information, Production and Organizations. Heidelberg: Springer, 2015. |
[20] | 王蓓, 刘卫东, 陆大道 . 中国大都市区科技资源配置效率研究: 以京津冀、长三角和珠三角地区为例. 地理科学进展, 2011,30(10):1233-1239. |
[ Wang Bei, Liu Weidong, Lu Dadao . Allocation efficiency of science and technology resources in Jing-Jin-Ji, Yangtze River Delta and Pearl River Delta regions. Progress in Geography, 2011,30(10):1233-1239.] | |
[21] | 曹贤忠, 曾刚, 邹琳 . 长三角城市群R&D资源投入产出效率分析及空间分异. 经济地理, 2015,35(1):104-111. |
[ Cao Xianzhong, Zeng Gang, Zou Lin . Spatial differentiation of input-output efficiency of R&D resources in case of Yangtze River Delta Urban Agglomeration. Economic Geography, 2015,35(1):104-111.] | |
[22] | 朱贻文, 曾刚, 邹琳 , 等. 长江经济带区域创新绩效时空特征分析. 长江流域资源与环境, 2017,26(12):1954-1962. |
[ Zhu Yiwen, Zeng Gang, Zou Lin , et al. Spatial feature of regional innovation performance in Yangtze economic zone. Resources and Environment in the Yangtze Basin, 2017,26(12):1954-1962.] | |
[23] | 魏守华, 姜宁, 吴贵生 . 内生创新努力、本土技术溢出与长三角高技术产业创新绩效. 中国工业经济, 2009, ( 2):25-34. |
[ Wei Shouhua, Jiang Ning, Wu Guisheng . Endogenous R&D effort, indigenous technological spillovers and innovative performance of high-tech industry in the Yangtze River Delta in China. China Industrial Economics, 2009, ( 2):25-34.] | |
[24] | 胡曙虹, 杜德斌, 游小珺 , 等. 中国“成长三角”区域高校知识创新绩效的时空演化分析. 经济地理, 2014,34(10):15-22. |
[ Hu Shuhong, Du Debin, You Xiaojun , et al. Spatial-temporal evolution analysis on knowledge innovation performance of universities in China's "Growth Triangle Regions". Economic Geography, 2014,34(10):15-22.] | |
[25] | 刘玲利 . 科技资源配置理论与配置效率研究. 长春: 吉林大学博士学位论文, 2007. |
[ Liu Linli . Research on allocation theory and allocation efficiency of science and technology resources. Changchun: Doctoral Dissertation of Jilin University, 2007.] | |
[26] | 陈傲, 柳卸林, 程鹏 . 空间知识溢出影响因素的作用机制. 科学学研究, 2011,29(6):883-889. |
[ Chen Ao, Liu Xielin, Cheng Peng . Research on mechanisms of the influential factors of spatial knowledge spill-off. Studies in Science of Science, 2011,29(6):883-889.] | |
[27] | 赵勇, 白永秀 . 知识溢出:一个文献综述. 经济研究, 2009, ( 1):144-156. |
[ Zhao Yong, Bai Yongxiu . Knowledge spillovers: A Survey of the literature. Economic Research Journal, 2009, ( 1):144-156.] | |
[28] | 方创琳, 鲍超, 马海涛 . 2016中国城市群发展报告. 北京: 科学出版社, 2016. |
[ Fang Chuanglin, Bao Chao, Ma Haitao. 2016 China's Urban Agglomeration Development Report. Beijing: Science Press, 2016.] | |
[29] | Boschma R . Proximity and innovation: A critical assessment. Regional Studies, 2005,39(1):61-74. |
[30] | Aigner D, Lovell C A K, Schmidt P . Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 1977,6(1):21-37. |
[31] | Battese G E, Coelli T J . Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 1992,3(1-2):153-169. |
[32] | Elhorst J P . Matlab software for spatial panels. International Regional Science Review, 2015,37(3):389-405. |
[33] | Romer P M . Endogenous technological change. Journal of Political Economy, 1990,98(5):71-102. |
[34] | 朱平芳, 徐伟民 . 政府的科技激励政策对大中型工业企业R&D投入及其专利产出的影响: 上海市的实证研究. 经济研究, 2003, ( 6):45-53. |
[ Zhu Pingfang, Xu Weimin . On the impact of government's S&T incentive policy on the R&D input and its patent output of large and medium-sized industrial enterprises in Shanghai. Economic Research Journal, 2003, ( 6):45-53.] | |
[35] | 余冬筠, 金祥荣 . 创新主体的创新效率区域比较研究. 科研管理, 2014,35(3):51-57. |
[ Yu Dongyun, Jin Xiangrong . Innovation efficiency evaluation of the innovation subjects and their regional difference. Science Research Management, 2014,35(3):51-57.] | |
[36] | LeSage J, Pace R K . Introduction to Spatial Econometrics. New York: Chapman and Hall/ CRC, 2009. |
[37] | 李伟, 余翔, 蔡立胜 . 政府科技投入、知识产权保护与企业研发投入. 科学学研究, 2016,34(3):357-365. |
[ Li Wei, Yu Xiang, Cai Lisheng . Study on the relationship between government R&D investment, intellectual property right protection and enterprises R&D investment. Studies in Science of Science, 2016,34(3):357-365.] | |
[38] | 王鹏, 赵捷 . 产业结构调整与区域创新互动关系研究: 基于我国2002—2008年的省际数据. 产业经济研究, 2011, ( 4):53-60. |
[ Wang Peng, Zhao Jie . A study of the interaction mechanism of industrial restructuring and regional innovation: Based on the provincial data of China between 2002-2008. Industrial Economics Research, 2011, ( 4):53-60.] |
[1] | 张博胜, 杨子生. 中国城镇化的农村减贫及其空间溢出效应——基于省级面板数据的空间计量分析[J]. 地理研究, 2020, 39(7): 1592-1608. |
[2] | 于博, 杨旭, 吴相利, 曹原赫, 蔡莹, 王雪微, 赵程. 中国城市环境污染监管水平的空间演化特征与影响因素[J]. 地理研究, 2019, 38(7): 1777-1790. |
[3] | 刘汉初, 樊杰, 周侃. 中国科技创新发展格局与类型划分——基于投入规模和创新效率的分析[J]. 地理研究, 2018, 37(5): 910-924. |
[4] | 杨勇, 邓祥征, 李志慧, 吴锋, 李小云. 2000-2015年华北平原土地利用变化对粮食生产效率的影响[J]. 地理研究, 2017, 36(11): 2171-2183. |
[5] | 张学波, 陈思宇, 廖聪, 宋金平. 京津冀地区经济发展的空间溢出效应[J]. 地理研究, 2016, 35(9): 1753-1766. |
[6] | 毛琦梁, 董锁成, 黄永斌, 李俊, 吴殿廷. 首都圈产业分布变化及其空间溢出效应分析——基于制造业从业人数的实证研究[J]. 地理研究, 2014, 33(5): 899-914. |
[7] | 王良健, 李辉. 中国耕地利用效率及其影响因素的区域差异——基于281个市的面板数据与随机前沿生产函数方法[J]. 地理研究, 2014, 33(11): 1995-2004. |
|