地理研究 ›› 2020, Vol. 39 ›› Issue (3): 735-748.doi: 10.11821/dlyj020190164
刘俊杰1,2, 潘自武1,2, 秦奋1,2,3, 顾江岩1, 朱明阳1, 赵芳1()
收稿日期:
2019-03-06
修回日期:
2019-05-23
出版日期:
2020-03-20
发布日期:
2020-05-20
通讯作者:
赵芳
作者简介:
刘俊杰(1995-),女,河南周口人,硕士,主要从事山地GIS、山地地理研究。E-mail: junjieliu555@163.com
基金资助:
LIU Junjie1,2, PAN Ziwu1,2, QIN Fen1,2,3, GU Jiangyan1, ZHU Mingyang1, ZHAO Fang1()
Received:
2019-03-06
Revised:
2019-05-23
Online:
2020-03-20
Published:
2020-05-20
Contact:
ZHAO Fang
摘要:
秦巴山地作为横亘在中国南北过渡带的巨大山脉,其山体效应对中国中部植被和气候的非地带性分布产生了重要的影响,山体内外同海拔的温差是表征山体效应大小较为理想的指标。本研究结合MODIS地表温度(LST)数据、STRM-1 DEM数据和秦巴山地的118个气象站点的观测数据,分别采用普通线性回归(OLS)和地理加权回归(GWR)两种分析方法对秦巴山地的气温进行估算,在此基础上将秦巴山地各月气温转换为同海拔(1500 m,秦巴山地平均海拔)气温,对比分析秦巴山地的山体效应。结果表明:① 相比OLS分析,GWR分析方法的精度更高,各月回归模型的R 2均在0.89以上,均方根误差(RMSE)在0.68~0.98 ℃之间。② 利用GWR估算得到的同海拔气温,从东向西随海拔升高呈现了明显的升高的趋势,秦岭西部山地比东段升高约6 ℃和4.5 ℃;大巴山西部山地年均和7月份同海拔的气温较东段升高约8 ℃和5 ℃。③ 从南向北,以汉江为分界,秦岭与大巴山的同海拔的气温均呈现出由山体边缘向内部升高的趋势。④ 秦巴山地西部大起伏高山,秦岭大起伏高中山和大巴山大起伏中山,相比豫西汉中中山谷地,各月均同海拔气温分别升高了约3.85~9.28 ℃、1.49~3.34 ℃和0.43~3.05 ℃,平均温差约为3.50 ℃,说明秦巴山地大起伏中高山的山体效应十分明显。
刘俊杰, 潘自武, 秦奋, 顾江岩, 朱明阳, 赵芳. 基于MODIS的秦巴山地气温估算与山体效应分析[J]. 地理研究, 2020, 39(3): 735-748.
LIU Junjie, PAN Ziwu, QIN Fen, GU Jiangyan, ZHU Mingyang, ZHAO Fang. Estimation of air temperature based on MODIS and analysis of mass elevation effect in the Qinling-Daba Mountains[J]. GEOGRAPHICAL RESEARCH, 2020, 39(3): 735-748.
表1
各月OLS回归分析结果"
统计指标 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.78 | 0.73 | 0.79 | 0.88 | 0.93 | 0.94 | 0.94 | 0.91 | 0.89 | 0.89 | 0.86 | 0.83 |
AdjR2 | 0.77 | 0.72 | 0.78 | 0.88 | 0.93 | 0.94 | 0.94 | 0.91 | 0.89 | 0.89 | 0.86 | 0.83 |
RMSE(℃) | 1.53 | 1.51 | 1.35 | 1.03 | 0.87 | 0.84 | 0.86 | 0.96 | 1.05 | 1.04 | 1.24 | 1.35 |
AICc | 443.52 | 441.11 | 414.21 | 350.14 | 311.29 | 300.97 | 307.07 | 333.51 | 355.58 | 353.06 | 393.06 | 414.84 |
K(BP) | 8.83 | 5.84 | 12.08 | 14.84 | 19.12 | 12.91 | 12.80 | 12.45 | 15.66 | 12.14 | 5.19 | 14.54 |
K(BP)-Pro | 0.0121 | 0.0540 | 0.0024 | 0.0006 | 0.0001 | 0.0016 | 0.0017 | 0.0020 | 0.0004 | 0.0023 | 0.0745 | 0.0007 |
表2
各月GWR回归分析结果"
统计指标 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.91 | 0.89 | 0.91 | 0.94 | 0.95 | 0.96 | 0.96 | 0.95 | 0.95 | 0.95 | 0.94 | 0.92 |
AdjR2 | 0.89 | 0.87 | 0.88 | 0.92 | 0.94 | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | 0.93 | 0.90 |
RMSE(℃) | 0.98 | 0.94 | 0.90 | 0.76 | 0.71 | 0.71 | 0.68 | 0.71 | 0.68 | 0.72 | 0.78 | 0.95 |
AICc | 371.91 | 355.70 | 352.85 | 313.12 | 298.22 | 295.11 | 287.10 | 296.81 | 286.18 | 299.42 | 317.24 | 365.61 |
表3
118个台站气温GWR估算结果精度统计"
月份 | 残差 | 局域决定系数(Local R2) | ||
---|---|---|---|---|
范围/℃ | -1.2~1.2 ℃的台站比例/% | -2~2 ℃的台站比例/% | ||
1 | -3.77~2.90 | 80.51 | 96.61 | 0.67~0.93 |
2 | -3.41~3.37 | 87.29 | 96.61 | 0.61~0.94 |
3 | -3.85~4.02 | 88.14 | 97.46 | 0.63~0.96 |
4 | -2.85~3.50 | 92.37 | 98.31 | 0.72~0.95 |
5 | -2.08~3.91 | 93.22 | 98.31 | 0.81~0.95 |
6 | -1.55~3.52 | 89.83 | 99.15 | 0.81~0.95 |
7 | -1.59~3.45 | 88.98 | 99.15 | 0.78~0.97 |
8 | -2.75~5.16 | 94.07 | 98.31 | 0.78~0.97 |
9 | -1.77~2.60 | 93.22 | 98.31 | 0.78~0.97 |
10 | -2.79~2.33 | 91.53 | 98.31 | 0.78~0.96 |
11 | -2.32~3.38 | 88.98 | 97.46 | 0.79~0.95 |
12 | -3.09~2.56 | 80.51 | 94.07 | 0.68~0.94 |
表4
豫西汉中中山谷地与大巴山大起伏中山、秦岭大起伏高中山、西部大起伏高山各月份同海拔(1500 m)气温均值及差值"
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | 年均温 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
豫西汉中中山谷地 | -3.87 | -0.87 | 4.19 | 9.78 | 14.09 | 17.98 | 20.02 | 18.56 | 14.27 | 9.23 | 3.17 | -2.31 | 8.69 |
大巴山大起伏中山 | -0.83 | 1.30 | 5.98 | 10.99 | 14.86 | 18.42 | 20.76 | 19.63 | 15.90 | 11.20 | 5.83 | 0.48 | 10.38 |
秦岭大起伏高中山 | -0.64 | 2.47 | 7.14 | 12.26 | 15.98 | 19.48 | 21.70 | 20.67 | 16.63 | 11.66 | 5.66 | 0.29 | 11.11 |
西部大起伏高山 | 5.40 | 8.03 | 10.76 | 14.85 | 18.96 | 21.84 | 24.16 | 24.02 | 20.84 | 16.51 | 9.64 | 5.85 | 15.10 |
ΔT西部大起伏高山-豫西汉中中山谷地 | 9.28 | 8.90 | 6.57 | 5.07 | 4.88 | 3.85 | 4.15 | 5.46 | 6.57 | 7.28 | 6.46 | 8.16 | 6.41 |
ΔT秦岭大起伏高中山-豫西汉中中山谷地 | 3.23 | 3.34 | 2.95 | 2.47 | 1.89 | 1.49 | 1.68 | 2.11 | 2.36 | 2.42 | 2.49 | 2.60 | 2.42 |
ΔT大巴山大起伏中山-豫西汉中中山谷地 | 3.05 | 2.17 | 1.79 | 1.21 | 0.77 | 0.43 | 0.74 | 1.07 | 1.63 | 1.97 | 2.66 | 2.79 | 1.69 |
[1] | Körner C . Worldwide Positions of Alpine Treelines and Their Causes. Berlin: Springer, 1998. |
[2] | Körner C . Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Berlin: Springer Science & Business Media, 2012. |
[3] | Zhang B P, Yao Y H . Implications of mass elevation effect for the altitudinal patterns of global ecology. Journal of Geographical Sciences, 2016,26(7):871-877. |
[4] | 张百平, 姚永慧 . 山体效应研究. 北京: 中国环境出版社, 2015. |
[ Zhang Baiping, Yao Yonghui. Study of Mountain Mass Effect. Beijing: China Environment Press, 2015.] | |
[5] | 贺文慧 . 基于垂直带的山体效应数字模拟——以青藏高原、安第斯山区中段为例. 北京: 中国科学院大学博士学位论文, 2016. |
[ He Wenhui . Digital simulation of mass elevation effect based on altitudinal belt of vegetation —Taking the Qinghai-Tibet Plateau and the middle section of the Andes Mountains as an example. Beijing: Doctoral Dissertation of The University of Chinese Academy of Sciences, 2016.] | |
[6] | 雷明德 . 陕西植被. 北京: 科学出版社, 1999. |
[ Lei Mingde. Shanxi Vegetation Beijing: Science Press, 1999.] | |
[7] | 应俊生, 马成功, 张志松 . 鄂西神农架地区的植被和植物区系. 中国科学院大学学报, 1979,17(3):41-60. |
[ Ying Junsheng, Ma Chenggong, Zhang Zhisong . Observations of the flora and vegetation of Mt. Shennungia in western Hupeh, China. Institute of Botany, Academia Sinica, 1979,17(3):41-60.] | |
[8] | 岳明, 党高弟, 辜天琪 . 佛坪国家级自然保护区植被垂直带谱及其与邻近地区的比较. 植物科学学报, 2000,18(5):375-382. |
[ Yue Ming, Dang Gaodi, Gu Tianqi . Vertical zone spectrum of vegetation in Foping National Reserve and the comparison with the adjacent areas. Journal of Wuhan Botanical Research, 2000,18(5):375-382.] | |
[9] | 傅志军 . 秦巴山地土壤地带性特征. 宝鸡文理学院学报(自然科学版), 2004,24(1):68-69. |
[ Fu Zhijun . Soil zonal features between Qinling Mountain and Hualong Mountain. Journal of Baoji University of Arts and Sciences(Natural Science Edition), 2004,24(1):68-69.] | |
[10] | 傅抱璞, 虞静明, 李兆元 . 秦岭太白山夏季的小气候特点. 地理学报, 1982,37(1):88-97. |
[ Fu Baopu, Yu Jingming, Li Zhaoyuan . Microclimate characteristics of Taibai Mountain in Qinling Mountains in summer. Acta Geographica Sinica, 1982,37(1):88-97.] | |
[11] | Tang Z, Fang J . Temperature variation along northern and southern slope of Mt. Taibai, China. Agricultural & Forest Meteorology, 2006,139(3):200-207. |
[12] | 李双双, 芦佳玉, 延军平 , 等. 1970-2015年秦岭南北气温时空变化及其气候分界意义. 地理学报, 2018,73(1):13-24. |
[ Li Shuangshuang, Lu Jiayu, Yan Junping , et al. Spatiotemporal variability of temperature in northern andsouthern Qinling Mountains and its influence on climatic boundary. Acta Geographica Sinica, 2018,73(1):13-24.] | |
[13] | 党海山 . 秦巴山地亚高山冷杉(Abies fargesii)林对区域气候的响应. 武汉: 中国科学院研究生院(武汉植物园)博士学位论文, 2007. |
[ Dang Haishan . Responses of the subalpine fir (Abies fargesii) forests in the Qinba Mountains to regional climatic varability. Wuhan: Doctoral Dissertation of Wuhan Botanical Garden, the Chinese Academy of Sciences, 2007.] | |
[14] | 余显芳 . 秦岭山地自然地理. 华南师范学院学报(自然科学版) , 1958,37(1):157-175. |
[ Yu Xianfang . Natural geography of the Qinling Mountain. Journal of South China Normal University (Natural Science Edition), 1958,37(1):157-175.] | |
[15] | 应俊生 . 秦岭植物区系的性质、特点和起源. 中国科学院大学学报, 1994,32(5):389-410. |
[ Ying Junsheng . An analysis of the flora of Qinling Mountain Range: its nature, characteristics, and origins. Acta Phytotaxonomica Sinica, 1994,32(5):389-410.] | |
[16] | 罗勇, 张百平 . 基于山地垂直带谱的秦岭土地利用空间分异. 地理科学, 2006,26(5):574-579. |
[ Luo Yong, Zhang Baiping . Land use patterns differentiation based on vertical belts in Qinling Mountains. Scientia Geographica Sinica, 2006,26(5):574-579.] | |
[17] | Quervain A D . Die Hebung der atmosphärischen lsothermenin der Schweizer Alpen und ihre Beziehungzuderen Höhengrenzen. Gerlands Beitr. Geophys. , 1904,6:481-533. |
[18] | Grubb P J . Interpretation of the ‘Massenerhebung’effect on tropical mountains. Nature, 1971,229(5279):44. |
[19] | Holtmeier F K . Mountain Timberlines: Ecology, Patchiness, and Dynamics. Berlin: Springer Science & Business Media, 2009. |
[20] | Troll C . The upper timberlines in different climatic zones. Arctic and Alpine Research, 1973,5(sup3):A3-A18. |
[21] | Schickhoff U . The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain Ecosystems: Studies in Treeline Ecology. Heidelberg: Springer Berlin Heidelberg, 2005: 275-354. |
[22] | 张朔 . 山体效应主要形成因素及其定量化研究. 北京: 中国科学院大学博士学位论文, 2015. |
[ Zhang Shuo . Quantitative study of mass elevation effect based on its main forming-factors. Beijing: Doctoral Dissertation of The University of Chinese Academy of Sciences, 2015.] | |
[23] | 韩芳, 张百平, 谭靖 , 等. 山体基面高度对欧亚大陆东南部林线分布的影响—山体效应定量化研究. 地理学报, 2010,65(7):781-788. |
[ Han Fang, Zhang Baiping, Tan Jing , et al. The effect of mountain base elevation on the altitude of timberline in the Southeastern Eurasia: A study on the quantification of mass elevation effect. Acta Geographica Sinica, 2010,65(7):781-788.] | |
[24] | 赵芳, 张百平, 庞宇 , 等. 山体效应对北半球林线分布的影响分析. 地理学报, 2012,67(11):1556-1564. |
[ Zhao Fang, Zhang Baiping, Pang Yu , et al. Mass elevation effect and its contribution to the altitude of timberline in the Northern Hemisphere. Acta Geographica Sinica, 2012,67(11):1556-1564.] | |
[25] | 赵芳, 朱连奇, 张百平 , 等. 欧亚大陆高山林线温度的差异性分析. 生态学报, 2018,38(1):263-272. |
[ Zhao Fang, Zhu Lianqi, Zhang Baiping , et al. Temperature differences of timberlines in the Eurasian continent. Acta Ecologica Sinica, 2018,38(1):263-272.] | |
[26] | Barry R G . A climatological transect on the east slope of the Front Range, Colorado. Arctic and Alpine Research, 1973,5(2):89-110. |
[27] | Rao G V, Erdogan S . The atmospheric heat source over the Bolivian plateau for a mean January. Boundary-Layer Meteorology, 1989,46(1-2):13-33. |
[28] | Zhang H B, Zhang F, Ye M , et al. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11, 425-11, 441. |
[29] | Benali A, Carvalho A C, Nunes J P , et al. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 2012,124:108-121. |
[30] | Zhang H B, Zhang F, Zhang G Q , et al. Daily air temperature estimation on glacier surfaces in the Tibetan Plateau using MODIS LST data. Journal of Glaciology, 2018,64(243):132-147. |
[31] | 姚永慧, 张百平 . 基于MODIS数据的青藏高原气温与增温效应估算. 地理学报, 2013,68(1):95-107. |
[ Yao Yonghui, Zhang Baiping . MODIS-based estimation of air temperature andheating-up effect of the Tibetan Plateau. Acta Geographica Sinica, 2013,68(1):95-107.] | |
[32] | Yao Y H, Xu M, Zhang B P . The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts. Journal of Geographical Sciences, 2015,25(12):1411-1422. |
[33] | 姚永慧, 张百平 . 青藏高原气温空间分布规律及其生态意义. 地理研究, 2015,34(11):2084-2094. |
[ Yao Yonghui, Zhang Baiping . The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Plateau. Geographical Reserch, 2015,34(11):2084-2094.] | |
[34] | Wan Z . New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 2008,112(1):59-74. |
[35] | Wang M M, He G J, Zhang Z M , et al. Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China. Remote Sensing, 2017,9(12):1278. |
[36] | Propastin P, Kappas M, Erasmi S . Application of geographically weighted regression to investigate the impact of scale on prediction uncertainty by modelling relationship between vegetation and climate. IJSDIR, 2008,3:73-94. |
[37] | Fotheringham A S, Brunsdon C, Charlton M . Geographically weighted regression: The analysis of spatially varying relationships. New York: John Wiley & Sons, 2003. |
[38] | Brunsdon C, Fotheringham A S, Charlton M E . Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 1996,28(4):281-298. |
[39] | 王婧, 张百平, 张文杰 , 等. 科罗拉多落基山脉山体效应定量化研究. 地理研究, 2017,36(8):1467-1477. |
[ Wang Jing, Zhang Baiping, Zhang Wenjie , et al. Quantitative research of mass elevation effect in Colorado Rocky Mountains. Geographical Research, 2017,36(8):1467-1477.] | |
[40] | Barry R G . Mountain Weather and Climate. London: Routledge, 1992. |
[41] | Jobbágy E G, Jackson R B . Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 2000,9(3):253-268. |
[42] | 廖克 . 中华人民共和国国家自然地图集. 北京: 中国地图出版社, 1999. |
[ Liao Ke. National Natural Atlas of the People's Republic of China. Beijing: SinoMaps Press, 1999.] | |
[43] | 李炳元, 潘保田, 韩嘉福 . 中国陆地基本地貌类型及其划分指标探讨. 第四纪研究, 2008,28(4):535-543. |
[ Li Bingyuan, Pan Baotian, Han Jiafu . Basic terrestrial geomorphological types in China and their circumscriptions. Quaternary Sciences, 2008,28(4):535-543.] | |
[44] | Yao Y H, Zhang B P . MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas. Journal of Geographical Sciences, 2012,22(1):152-166. |
[45] | Vancutsem C, Ceccato P, Dinku T , et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 2010,114(2):449-465. |
[46] | Zhu W B, Lű A, Jia S F . Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 2013,130:62-73. |
[47] | Li X P, Wang L, Chen D L , et al. Near‐surface air temperature lapse rates in the mainland China during 1962-2011. Journal of Geophysical Research: Atmospheres, 2013,118(14):7505-7515. |
[48] | 方精云 . 我国气温直减率分布规律的研究. 科学通报, 1992, (9):817-820. |
[ Fang Jingyun . Study on the distribution of air temperature lapse rates in China. Chinese Science Bulletin, 1992, (9):817-820.] | |
[49] | Fang J Y, Lechowicz M . Climatic limits for the present distribution of beech (Fagus L. ) species in the world. Journal of Biogeography, 2006,33(10):1804-1819. |
[50] | Yeh T C . Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation. Meteorology and Atmospheric Physics, 1982,31(3):205-220. |
[51] | Molnar P, Emanuel K A . Temperature profiles in radiative‐convective equilibrium above surfaces at different heights. Journal of Geophysical Research: Atmospheres, 1999,104(D20):24265-24271. |
[52] | 孙国钧, 冯虎元 . 白水江自然保护区植被区系特征分析. 兰州大学学报(自然科学版), 1998,34(2):92-97. |
[ Sun Guojun, Feng Huyuan . The analysis of flora characteristics Baishuijiang Natural Sanctuary in Gansu. Journal of Lanzhou University (Natural Sciences), 1998,34(2):92-97.] | |
[53] | 方精云, 沈泽昊, 崔海亭 . 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 2004,12(1):10-19. |
[ Fang Jingyun, Shen Zehao, Cui Haiting . Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 2004,12(1):10-19.] | |
[54] | 郑远昌, 高生淮, 柴宗新 , 等. 试论横断山地区自然垂直带. 山地研究, 1986,4(1):75-83. |
[ Zheng Yuanchang, Gao Shenghuai, Chai Zongxin , et al. A praliminary study on the vertical natural zones in the Hengduan Mountainous region. Mountain Reaserch, 1986,4(1):75-83.] | |
[55] | 沈泽昊, 胡会峰, 周宇 , 等. 神农架南坡植物群落多样性的海拔梯度格局. 生物多样性, 2004,12(1):99-107. |
[ Shen Zehao, Hu Huifeng, Zhou Yu , et al. Altitudinal patterns of plant species diversity on the southern slope of Mt. Shennongjia, Hubei, China. Biodiversity Science, 2004,12(1):99-107.] | |
[56] | 高冠民 . 神农架山地垂直自然带. 山地研究, 1986,4(4):282-286. |
[ Gao Guanmin . The natural vertical zone of Shennongjia Mountain. Mountain Reserch, 1986,4(4):282-286.] | |
[57] | 薛智龙, 王俊明 . 大巴山西段陕西米仓山自然保护区的植被及分布. 陕西林业科技, 2010, (6):27-31. |
[ Xue Zhilong, Wang Junming . Vegetation distribution pattern in micang nature reserve located in the west part of bashan mountains. Shaanxi Forest Science and Technology, 2010, (6):27-31.] | |
[58] | 康慕谊, 朱源 . 秦岭山地生态分界线的论证. 生态学报, 2007,27(7):2774-2784. |
[ Kang Muyi, Zhu Yuan . Discussion and analysis on the geo-ecologicalboundary in Qinling Range. Acta Ecologica Sinica, 2007,27(7):2774-2784.] |
[1] | 索南东主, 姚永慧, 张百平. 青藏高原和阿尔卑斯山山体效应的对比研究[J]. 地理研究, 2020, 39(11): 2568-2580. |
[2] | 王婧, 张百平, 张文杰, 赵超, 王晶. 科罗拉多落基山脉山体效应定量化研究[J]. 地理研究, 2017, 36(8): 1467-1477. |
[3] | 韩芳, 张百平, 谭靖, 周亮广, 李伟涛, 刘民士. 山体基面高度对青藏高原及其周边地区雪线空间分布的影响[J]. 地理研究, 2014, 33(1): 23-30. |
[4] | 张力仁. 清代陕南秦巴山地的人类行为及其与环境的关系[J]. 地理研究, 2008, 27(1): 181-192. |
|