地理研究 ›› 2020, Vol. 39 ›› Issue (12): 2731-2742.doi: 10.11821/dlyj020200188

• 研究论文 • 上一篇    下一篇

高被引华人科学家知识网络的空间结构及影响因素

司月芳1,2(), 孙康1,2, 朱贻文1,3(), 曹贤忠1,3   

  1. 1.华东师范大学中国现代城市研究中心,上海 200062
    2.华东师范大学城市与区域科学学院,上海 200062
    3.华东师范大学城市发展研究院,上海 200062
  • 收稿日期:2020-03-09 修回日期:2020-10-23 出版日期:2020-12-20 发布日期:2021-02-20
  • 通讯作者: 朱贻文
  • 作者简介:司月芳(1982-),女,河北沧州人,博士,副教授,硕士生导师,研究方向为中国对外直接投资、创新网络和区域经济发展。E-mail: yfsi@re.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41871110);国家自然科学基金项目(41801109);上海市科技发展基金软科学项目(18692104500);上海市科技发展基金软科学项目(20692107500);中国博士后科学基金(2018M641963)

Spatial structure and influencing factors of knowledge network of highly cited Chinese scientists

SI Yuefang1,2(), SUN Kang1,2, ZHU Yiwen1,3(), CAO Xianzhong1,3   

  1. 1. The Center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China
    2. School of Urban and Regional Science, East China Normal University, Shanghai 200062, China
    3. Institute of Urban Development, East China Normal University, Shanghai 200062, China
  • Received:2020-03-09 Revised:2020-10-23 Online:2020-12-20 Published:2021-02-20
  • Contact: ZHU Yiwen

摘要:

知识网络的空间结构特征与影响因素是经济地理学探讨的热点议题之一,以往研究侧重于产业案例的分析,主要关注国家和城市层面的知识网络,而对科学家等个人层面的网络研究较为缺乏。以2014—2015年全球高被引科学家为原始数据,筛选出高被引华人科学家,并基于Web of Science数据库,检索高被引华人科学家之间合著论文的数据构建知识网络,借助社会网络分析方法对高被引华人科学家知识网络的空间结构进行分析;并运用负二项回归模型,从地理邻近性、社会邻近性、制度邻近性3个维度,探讨高被引华人科学家知识网络的影响机制。研究发现:① 高被引华人科学家知识网络存在核心-边缘结构特征,且具有小世界网络的网络特征;② 此知识网络呈现“小集聚大分散”的空间结构特征,地理邻近性作用明显;③ 高被引华人科学家知识网络形成过程中会受到科学家自身科研能力等因素的影响,地理距离和科学家之间的联系呈现负相关关系,地理邻近性的影响仍然存在,社会邻近性和制度邻近性均对知识网络的形成有促进作用。

关键词: 高被引华人科学家, 知识网络, 空间结构, 邻近性, 合作论文

Abstract:

The spatial structure characteristics and influencing factors of knowledge networks are heated research topics in the field of economic geography. Previous studies in knowledge networks have focused on industrial cases, especially on knowledge networks at the national and city levels, while the research of individuals has been relatively limited. We firstly selected highly cited Chinese scientists based on 2014-2015 global highly cited scientists as the original data, and then established knowledge network based on the co-authorship of papers among those scientists, and finally applied social network analysis methods to examine the spatial structure of the knowledge network and used the negative binomial regression model to explore the influence mechanism of knowledge network from the perspectives of geographic proximity, social proximity and institutional proximity. The study found that: (1) the knowledge network of highly cited Chinese scientists has core-peripheral structure with the characteristics of a small-world network. (2) The spatial distribution of this knowledge network is dispersal at global scale and agglomerated at local level. (3) The formation of the knowledge network is influenced by the personal characters of those scientists. Geographical distance has a negative effect on the connection between scientists. The influence of geographic proximity still exists. Both social proximity and institutional proximity have significant positive effects on the formation of knowledge networks of highly cited Chinese scientists.

Key words: highly cited Chinese scientists, knowledge network, spatial structure, proximity, co-author paper