地理研究 ›› 2021, Vol. 40 ›› Issue (5): 1239-1252.doi: 10.11821/dlyj020200608
雷义珍1,2,3(), 曹生奎1,2,3(
), 曹广超2,3, 杨羽帆4, 兰垚1,2,3, 季雨桐1,2,3, 李华非1,2,3
收稿日期:
2020-07-01
接受日期:
2021-01-20
出版日期:
2021-05-10
发布日期:
2021-07-10
通讯作者:
曹生奎
作者简介:
雷义珍(1994-),男,重庆巫溪县人,硕士,研究方向为生态水文与水资源学。E-mail:Leiyizhen@163.com
基金资助:
LEI Yizhen1,2,3(), CAO Shengkui1,2,3(
), CAO Guangchao2,3, YANG Yufan4, LAN Yao1,2,3, JI Yutong1,2,3, LI Huafei1,2,3
Received:
2020-07-01
Accepted:
2021-01-20
Online:
2021-05-10
Published:
2021-07-10
Contact:
CAO Shengkui
摘要:
氢氧稳定同位素和水化学已成为研究水文循环过程的良好示踪剂,两者的结合能很好地揭示流域或者区域(特别是缺少水文观测数据的高寒内陆地区)的水文循环过程。青藏高原地表环境较恶劣,缺乏流域尺度的水文观测资料,不利于对流域尺度水文循环过程的综合理解和认识,成为水资源高效综合利用的瓶颈。为此,本文以青海湖沙柳河流域为研究对象,通过对降水、河水和地下水的定期定点高密度采样和对其氢氧稳定同位素组成(δD、δ18O)和水化学氯离子(Cl-)浓度的分析测定,其目的旨在识别和示踪流域不同水体间的补给关系,探究D-18O同位素和Cl-离子能否指示流域水文过程。结果显示,青海湖沙柳河流域干、支流河水和地下水均受降水补给,自上游至下游,干流河水受降水补给作用较强,支流河水受补给作用依次减弱,地下水受降水补给作用较弱。下游干流河水主要受下游地下水和全域支流河水补给,比例分别为15.45%和84.55%;下游地下水主要由中上游的河水和地下水补给,比例分别为42.40%和57.60%。上述结果表明结合氢氧稳定同位素和水化学手段可定量揭示高寒内陆河流域的水文过程,可为青藏高原其他类似流域水文过程示踪研究提供范例。
雷义珍, 曹生奎, 曹广超, 杨羽帆, 兰垚, 季雨桐, 李华非. 基于氢氧稳定同位素和水化学的青藏高原高寒内陆流域水文过程示踪研究[J]. 地理研究, 2021, 40(5): 1239-1252.
LEI Yizhen, CAO Shengkui, CAO Guangchao, YANG Yufan, LAN Yao, JI Yutong, LI Huafei. Hydrological process tracing study of the alpine inland basin of the Tibetan Plateau based on hydrogen and oxygen stable isotopes and hydrochemistry[J]. GEOGRAPHICAL RESEARCH, 2021, 40(5): 1239-1252.
表1
沙柳河流域降水氢氧稳定同位素组成平均值及其线性关系"
类型 | 样品数 | 海拔(m) | 降水量(mm) | δD加权平均 值(‰) | δ18O加权平均 值(‰) | LWML | 相关系数(R2) | 显著性水平(p<) |
---|---|---|---|---|---|---|---|---|
Y01 | 6 | 3470 | 317.6 | -54.10 | -9.04 | δD=8.29δ18O+19.73 | 0.93 | 0.010 |
Y02 | 6 | 3484 | 402.9 | -48.61 | -8.31 | δD=8.08δ18O+18.98 | 0.98 | 0.001 |
Y03 | 6 | 3582 | 455.5 | -49.56 | -8.48 | δD=9.11δ18O+28.33 | 0.98 | 0.001 |
Y04 | 6 | 3610 | 439.2 | -47.13 | -8.01 | δD=8.65δ18O+20.70 | 0.82 | 0.010 |
Y05 | 6 | 3614 | 524.4 | -45.04 | -7.77 | δD=8.82δ18O+23.86 | 0.93 | 0.010 |
Y06 | 5 | 3746 | 516.3 | -51.01 | -8.84 | δD=8.86δ18O+27.58 | 0.98 | 0.001 |
Y07 | 5 | 3917 | 418.2 | -43.27 | -8.22 | δD=8.75δ18O+28.49 | 0.99 | 0.001 |
Y08 | 5 | 4090 | 580.3 | -45.52 | -8.48 | δD=9.60δ18O+35.68 | 0.99 | 0.010 |
Y09 | 5 | 4182 | 475.0 | -61.31 | -10.43 | δD=8.00δ18O+21.81 | 0.99 | 0.001 |
Y01~Y09 | 50 | — | 458.8 | -46.72 | -8.15 | δD=8.43δ18O+22.71 | 0.94 | 0.001 |
表2
沙柳河流域河水和地下水δD、δ18O和d-excess平均值及Cl-离子平均浓度变化"
类型 | 编号 | 样品数 | 河源距离(km) | 海拔(m) | Cl-(SD)(mg/L) | δD(SD)(‰) | δ18O(SD)(‰) | d-excess(SD)(‰) |
---|---|---|---|---|---|---|---|---|
水文站 | A1 | 12 | 87.77 | 3291 | 14.63(9.73) | -43.66(3.88) | -7.33(0.56) | 14.97(1.44) |
干流 | A2 | 12 | 68.79 | 3381 | 5.33(1.98) | -45.33(3.98) | -7.59(0.67) | 15.41(2.06) |
干流 | A3 | 9 | 52.00 | 3496 | 6.53(3.60) | -44.54(2.03) | -7.51(0.32) | 15.53(1.26) |
干流 | A4 | 9 | 37.53 | 3602 | 5.02(1.85) | -47.03(3.51) | -7.82(0.48) | 15.49(1.63) |
干流 | A5 | 9 | 29.51 | 3691 | 4.51(2.89) | -48.56(4.06) | -8.12(0.52) | 16.37(1.29) |
干流 | A6 | 9 | 20.77 | 3770 | 4.52(1.37) | -50.76(4.77) | -8.45(0.51) | 16.86(1.29) |
干流 | A7 | 9 | 11.90 | 3873 | 3.86(1.56) | -55.44(8.35) | -9.03(0.85) | 16.78(2.16) |
干流 | A8 | 9 | 0 | 4120 | 3.75(1.84) | -58.95(10.39) | -9.71(1.25) | 18.76(1.16) |
支流 | B1 | 9 | 78.90 | 3353 | 7.96(4.22) | -40.82(2.92) | -6.73(0.52) | 13.05(2.22) |
支流 | B2 | 9 | 73.06 | 3387 | 7.42(1.58) | -38.48(13.04) | -6.52(0.67) | 13.71(3.29) |
支流 | B3 | 9 | 68.81 | 3391 | 5.52(1.72) | -38.77(4.97) | -6.58(0.56) | 13.84(2.21) |
支流 | B4 | 9 | 61.18 | 3452 | 6.12(1.39) | -40.77(3.39) | -6.66(0.49) | 12.53(1.40) |
支流 | B5 | 9 | 56.27 | 3521 | 4.75(1.19) | -45.33(3.69) | -7.56(0.47) | 15.19(0.72) |
支流 | B6 | 9 | 46.91 | 3524 | 6.29(1.77) | -43.83(1.93) | -7.39(0.27) | 15.31(0.88) |
支流 | B7 | 8 | 34.25 | 3630 | 6.31(2.08) | -46.59(2.92) | -7.80(0.35) | 15.83(1.36) |
支流 | B8 | 9 | 15.73 | 3847 | 6.25(3.20) | -51.74(3.94) | -8.60(0.61) | 17.06(1.87) |
支流 | B9 | 9 | 5.89 | 4002 | 3.75(1.84) | -58.26(10.98) | -9.47(1.16) | 17.47(2.18) |
地下水 | C1 | 12 | 80.02 | 3329 | 12.64(4.48) | -40.54(0.91) | -6.64(0.27) | 12.56(1.82) |
地下水 | C2 | 12 | 61.18 | 3434 | 8.44(4.56) | -39.71(1.67) | -6.59(0.43) | 13.03(2.08) |
地下水 | C3 | 12 | 55.27 | 3473 | 6.02(1.08) | -42.20(1.83) | -7.03(0.41) | 14.03(1.92) |
地下水 | C4 | 12 | 36.48 | 3575 | 6.11(1.69) | -36.22(2.42) | -6.21(0.43) | 13.48(1.81) |
表3
水文站(A1) 河水δD、δ18O和d-excess值及Cl- 离子浓度变化"
采样时间(年/月) | Cl-(mg/L) | δD(‰) | δ18O(‰) | d-excess(‰) |
---|---|---|---|---|
2017/10 | 13.00 | -51.06 | -8.03 | 13.14 |
2017/11 | 26.59 | -47.41 | -7.96 | 16.29 |
2017/12 | 29.27 | -43.42 | -7.51 | 16.63 |
2018/01 | 31.43 | -43.10 | -7.07 | 13.43 |
2018/02 | 15.91 | -43.94 | -7.22 | 13.79 |
2018/03 | 14.24 | -41.53 | -6.97 | 14.24 |
2018/04 | 15.53 | -42.19 | -7.04 | 14.13 |
2018/05 | 4.07 | -41.23 | -7.00 | 14.80 |
2018/06 | 4.17 | -39.13 | -6.60 | 13.67 |
2018/07 | 6.64 | -44.00 | -7.80 | 18.38 |
2018/08 | 5.69 | -41.49 | -7.06 | 14.95 |
2018/09 | 9.00 | -43.54 | -7.43 | 15.86 |
[1] | 宋献方, 柳鉴容, 孙晓敏, 等. 基于CERN的中国大气降水同位素观测网络. 地球科学进展, 2007,22(7):738-747. |
[ Song Xianfang, Liu Jianrong, Sun Xiaomin, et al. Establishment of Chinese Network of Isotopes in Precipitation (CHNIP) based on CERN. Advances in Earth Science, 2007,22(7):738-747.] DOI: 10.3321/j.issn:1001-8166.2007.07.010. | |
[2] | 王彩霞, 张杰, 董志文, 等. 基于氢氧同位素和水化学的祁连山老虎沟冰川区径流过程分析. 干旱区地理, 2015,38(5):927-935. |
[ Wang Caixia, Zhang Jie, Dong Zhiwen, et al. Glacier meltwater runoff process analysis based on δD and δ18O isotope and chemistry in the Laohugou. Arid Land Geography, 2015,38(5):927-935.] DOI: 10.13826/j.cnki.cn65-1103/x.2015.05.007. | |
[3] | Mcdonnell J J. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrological Processes, 2003,17(9):1869-1875. DOI: https://doi.org/10.1002/hyp.5132. |
[4] | 章新平, 刘晶淼, 田立德. 亚洲降水中δ18O沿不同水汽输送路径的变化. 地理学报, 2004,59(5):699-708. |
[ Zhang Xinping, Liu Jinmiao, Tian Lide. Variations of δ 18O in precipitation along vapor transport paths over Asia. Acta Geographica Sinica, 2004,59(5):699-708.] DOI: 10.3321/j.issn: 0375-5444.2004.05.007. | |
[5] | 肖捷颖, 赵品, 李卫红. 塔里木河流域地表水水化学空间特征及控制因素研究. 干旱区地理, 2016,39(1):33-40. |
[ Xiao Jieyin, Zhao Pin, Li Weihong. Spatial characteristic and controlling factors of surface water hydrochemistry in the Tarim River Basin. Arid Land Geography, 2016,39(1):33-40.] DOI: 10.13826/j.cnki.cn65-1103/x.2016.01.004. | |
[6] | Han G, Liu C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou province. China Chemical Geology, 2004,204(1-2):1-21. DOI: https://doi.org/10.1016/j.chemgeo.2003.09.009. |
[7] | 王欢欢. 基于深剖面土壤水同位素及氯离子的地下水补给机制研究. 杨陵: 西北农林科技大学硕士学位论文, 2018: 6-7. |
[ Wang Huanhuan. Determining groundwater recharge mechanism based on isotope and chloride characteristics of soil water from a deep soil profile. Yangling: Master Dissertation of Northwest Agriculture & Forestry University, 2018: 6-7.] | |
[8] | 覃光雄. 珠江河口区地下水盐分分布特征及来源分析. 广州: 暨南大学硕士学位论文, 2018: 9-10. |
[ Tan Guangxiong. Distribution and source of groundwater salinity in the Pearl River estuary. Guangzhou: Master Dissertation of Jinan University, 2018: 9-10.] | |
[9] | Sukhija B S, Reddy D V, Nagabhushanam P, et al. Characterisation of recharge processes and groundwater flow mechanisms in weathered-fractured granites of Hyderabad (India) using isotopes. Hydrogeology Journal, 2006,14(5):663-674. DOI: https://doi.org/10.1007/s10040-005-0461-6. |
[10] | Yechieli Y, Kafri U, Sivan O. The inter-relationship between coastal sub-aquifers and the Mediterranean Sea, deduced from radioactive isotopes analysis. Hydrogeology Journal, 2009,17(2):265-274. DOI: https://doi.org/10.1007/s10040-008-0329-7. |
[11] | 郭小燕, 冯起, 李宗省, 等. 敦煌盆地降水稳定同位素特征及水汽来源. 中国沙漠, 2015,35(3):715-723. |
[ Guo Xiaoyan, Feng Qi, Li Zongxing, et al. Variation of stable isotopes and moisture sources in precipitation at the Dunhuang Basin in Northwest China. Journal of Desert Research, 2015,35(3):715-723.] DOI: 10.7522/j.issn.1000-694X.2014.00076. | |
[12] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012,2(9):663-667. DOI: https://doi.org/10.1038/nCl-imate1580. |
[13] | Cui B L, Li X Y. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Science of The Total Environment, 2015, 527-528:26-37. DOI: https://doi.org/10.1016/j.scitotenv.2015.04.105. |
[14] | 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化. 冰川冻土, 2000,22(2):159-164. |
[ Tian Lide, Yao Tandong, Sun Weizhen, et al. Study on stable isotope fractionation during water evaporation in the middle of the Tibetan Plateau. Journal of Glaciolgy and Geocryolg, 2000,22(2):159-164.] | |
[15] | Wen X F, Yang B, Sun X M, et al. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology, 2015,230-231:89-96. DOI: https://doi.org/10.1016/j.agrformet.2015.12.003. |
[16] | Guo X Y, Tian L D, Wang L, et al. River recharge sources and the partitioning of catchment evapotranspiration fluxes as revealed by stable isotope signals in a typical high-elevation arid catchment. Journal of Hydrology, 2017,549:616-630. DOI: https://doi.org/10.1016/j.jhydrol.2017.04.037. |
[17] | Mueller M H, Alaoui A, Kuells C, et al. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water. Journal of Hydrology, 2014,519(1):340-352. DOI: https://doi.org/10.1016/j.jhydrol.2014.07.031. |
[18] | Adomako D, Maloszewski P, Stumpp C, et al. Estimating groundwater recharge from water isotope (δD, δ18O) depth profiles in the Densu River basin, Ghana. Hydrological Sciences Journal, 2010,55(8):1405-1416. DOI: https://doi.org/10.1080/02626667.2010.527847. |
[19] | Wang L, Hu F, Yin L, et al. Hydrochemical and isotopic study of groundwater in the Yinchuan plain, China. Environmental Earth Sciences, 2013,69(6):2037-2057. DOI: https://doi.org/10.1007/s12665-012-2040-1. |
[20] | Cheng L P, Liu W Z, Li Z, et al. Study of soil water movement and groundwater recharge for the loess tableland using environmental tracers. Transactions of the ASABE, 2014,57(1):23-30. DOI: https://doi.org/10.13031/trans.57.10017. |
[21] | Li Z, Chen X, Liu W Z, et al. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Science of the Total Environment, 2017,586:827-835. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.061. |
[22] | Boucher J L, Carey S K. Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment. Hydrology Research, 2010,41(6):508-519. DOI: https://doi.org/10.2166/nh.2010.146. |
[23] | 姚鹏, 卢国平. 拒马河的水化学、同位素特征及其指示意义. 环境化学, 2017,36(7):1525-1536. |
[ Yao Peng, Lu Guoping. Hydrochemical and isotopic characteristics of the Juma River and their implications. Environmental Chemistry, 2017,36(7):1525-1536.] DOI: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2017.07.2016101801. | |
[24] | Wu H W, Li X Y, He B, et al. Characterizing the Qinghai Lake watershed using oxygen-18 and deuterium stable isotopes. Journal of Great Lakes Research, 2017,43(3):33-42. DOI: https://doi.org/10.1016/j.jglr.2017.03.010. |
[25] | Cui B L, Li X Y. Runoff processes in the Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau, China: Insights from stable isotope and hydrochemistry. Quaternary International, 2015,380-381:123-132. DOI: https://doi.org/10.1016/j.quaint. 2015.02.030. |
[26] | Zhang G P, Xie H J, Yao T D, et al. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). Journal of Great Lakes Research, 2017,43(3):33-42. DOI: https://doi.org/10.1016/j.jhydrol.2014.08.022. |
[27] | 张飞, 金章东, 石岳威, 等. 青海湖水化学的季节性和空间变化及其受自生碳酸盐沉淀的影响. 地球环境学报, 2013,4(3):1314-1321. |
[ Zhang Fei, Jin Zhangdong, Shi Yuewei, et al. Seasonal and spatial variations of water chemistry in Lake Qinghai and its influence by authigenic precipitation. Journal of Earth Environment, 2013,4(3):1314-1321.] DOI: http://dx.doi.org/10.7515/JEE201303003. | |
[28] | Xiao J, Jin Z D, Zhang F. Geochemical and isotopic characteristics of shallow groundwater within the Lake Qinghai catchment, NE Tibetan Plateau. Quaternary International, 2013,313-314:62-73. DOI: https://doi.org/10.1016/j.quaint.2013.05.033. |
[29] | 刚察县志编纂委员会. 刚察县志. 西安: 陕西人民出版社, 1998: 95-97. |
[ Gangcha County Annals Compilation Committee. Gangcha County. Xi'an: Shanxi People's Publishing House, 1998: 95-97.] | |
[30] | Li Z X, Gui J, Wang X F, et al. Water resources in inland regions of central Asia: Evidence from stable isotope tracing. Journal of Hydrology, 2019,570:1-16. DOI: https://doi.org/10.1016/j.jhydrol.2019.01.003. |
[31] | Hooper R P. Christophersen, N., Peters, N.E. Modelling stream water chemistry as a mixture of soil water end-members. Journal of Hydrology, 1990,116:321-343. DOI: https://doi.org/10.1016/0022-1694(90)90130-P. |
[32] | Zhu X F, Wu T H, Zhao L, et al. Exploring the contribution of precipitation to water within the active layer during the thawing period in the permafrost regions of central Qinghai-Tibet Plateau by stable isotopic tracing. Science of The Total Environment, 2019,661:630-644. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.064. |
[33] | Genereux D. Quantifying uncertainty in tracer-based hydrograph separations. Water Resources Research, 1998,34:915-919. DOI: https://doi.org/10.1029/98WR00010. |
[34] | Wang W H, Wu T H, Zhao L, et al. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data. Journal of Hydrology. 2018,560:220-229. DOI: https://doi.org/10.1016/j.jhydrol.2018.03.032. |
[35] | 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中δ18O和δD变化特征. 自然资源学报, 2014,29(9):1552-1564. |
[ Wu Huawu, Li Xiaoyan, Zhao Guoqin, et al. Variation characteristics of δ18O and δD in precipitation and river water of Qinghai Lake Basin. Journal of Natural Resources, 2014,29(9):1552-1564.] DOI: http://dx.chinadoi.cn/10.11849/zrzyxb.2014.09.010. | |
[36] | Kendall C, McDonnell J J. Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier Science Ltd. 1998,839. DOI: https://doi.org/10.1016/C2009-0-10239-8. |
[37] | Jasechko S, Birks S J, Gleeson T, et al. The pronounced seasonality of global groundwater recharge. Water Resources Research, 2014,50(11):8845-8867. DOI: https://doi.org/10.1002/2014wr015809. |
[38] | 杨羽帆, 曹生奎, 冯起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征. 中国沙漠, 2019,39(5):45-53. |
[ Yang Yufan, Cao Shengkui, Feng Qi, et al. Spatial distribution characteristics of composition of stable hydrogen and oxygen isotopes of shallow groundwater in Shaliu River Basin of Qinghai Lake. Journal of Desert Research, 2019,39(5):45-53.] DOI: http://dx.chinadoi.cn/10.7522/j.issn.1000-694X.2018.00101. | |
[39] | 崔步礼. 基于氢氧稳定同位素的青海湖流域水循环及水量转换关系研究. 北京: 北京师范大学博士学位论文, 2011: 16-18. |
[ Cui Buli. Study on the relationship between water cycle and water quantity conversion in Qinghai lake basin based on hydrogen and oxygen stable isotope. Beijing: Doctoral Dissertation of Beijing Normal University, 2011: 16-18.] | |
[40] | 金章东, 石岳威, 张飞, 等. 青海湖流域浅层地下水补给来源及其水位变化. 地球环境学报, 2010,1(3):169-174. |
[ Jin Zhangdong, Shi Yuewei, Zhang Fei, et al. Sources of shallow groundwater recharge and changes of water level in Qinghai lake basin. Journal of Earth Environment, 2010,1(3):169-174.] DOI: http://dx.doi.org/10.7515/JEE201003003. | |
[41] | Liao F, Wang G C, Yi L X, et al. Identifying locations and sources of groundwater discharge into Poyang Lake (eastern China) using radium and stable isotopes (deuterium and oxygen-18). Science of The Total Environment, 2020,740:140163. DOI: https://doi.org/10.1016/j.scitotenv.2020.140163. |
[42] | Krishan G, Prasad G, Kumar C P, et al. Identifying the seasonal variability in source of groundwater salinization using deuterium excess: A case study from Mewat, Haryana, India. Journal of Hydrology: Regional Studies, 2020,31:100724. DOI: https://doi.org/10.1016/j.ejrh.2020.100724. |
[1] | 车存伟, 张明军, 王圣杰, 杜勤勤, 马转转, 孟鸿飞, 瞿德业. 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究[J]. 地理研究, 2020, 39(11): 2537-2551. |
[2] | 王蕊, 刘兆飞, 姚治君. 蒙古国中北部地表水离子化学特征及其主要成因[J]. 地理研究, 2017, 36(4): 790-800. |
[3] | 陆莹, 王乃昂, 李卓仑, 董春雨, 朱金峰. 巴丹吉林沙漠湖泊水化学空间分带性与湖泊面积的等级关系[J]. 地理研究, 2011, 30(11): 2083-2091. |
[4] | 刘相超,祖波,宋献方,夏军,唐常源,张依章. 三峡库区梁滩河流域水化学与硝酸盐污染[J]. 地理研究, 2010, 29(4): 629-639. |
[5] | 宋献方, 李发东, 于静洁, 唐常源, 杨 聪, 刘相超, 佐仓保夫, 近滕昭彦. 基于氢氧同位素与水化学的 潮白河流域地下水水循环特征[J]. 地理研究, 2007, 26(1): 11-21. |
[6] | 罗维佳, 都金康, 谢顺平, 冯学智. 地表空间水文过程三维可视化试验——以浙江黄土岭流域为例[J]. 地理研究, 2005, 24(6): 947-955. |
[7] | 程维明, 周成虎, 汤奇成, 张百平, 姚永慧. 天山北麓前山带对平原区水文过程的影响[J]. 地理研究, 2001, 20(4): 439-445. |
[8] | 刘苏峡, 张士锋, 刘昌明. 黄河流域水循环研究的进展和展望[J]. 地理研究, 2001, 20(3): 257-265. |
[9] | 邓伟, 何岩, 宋新山, 阎百兴. 松嫩平原西部盐沼湿地水环境化学特征[J]. 地理研究, 2000, 19(2): 113-119. |
|