地理研究 ›› 2021, Vol. 40 ›› Issue (7): 2051-2065.doi: 10.11821/dlyj020200646
收稿日期:
2020-07-09
接受日期:
2021-04-07
出版日期:
2021-07-10
发布日期:
2021-09-10
通讯作者:
魏伟
作者简介:
杜海波(1991-),女,内蒙古赤峰人,硕士,研究方向为资源环境遥感与GIS应用,资源环境与可持续发展。E-mail: cfduhaibogradu@163.com
基金资助:
DU Haibo1(), WEI Wei1(
), ZHANG Xueyuan1, JI Xuepeng2
Received:
2020-07-09
Accepted:
2021-04-07
Online:
2021-07-10
Published:
2021-09-10
Contact:
WEI Wei
摘要:
科学估算并动态监测长时间序列区域能源消费碳排放发展态势,是制定、实施及评估地区碳减排策略的科学依据和基础保障。基于构建的长时间序列可相互比较的DMSP/OLS与NPP/VIIRS两种夜间灯光数据集,本文模拟了2000—2018年黄河流域能源消费碳排放的时空变化特征,并从流域地理分异的角度对其影响因素进行解析。结果表明:① 2000—2018年黄河流域能源消费碳排放呈现总量不断上升但增长速率下降的态势,整体表现出收敛趋势,但还未达到碳峰值;流域内部碳排放总量呈中游>下游>上游的地理分异特征。② 以黄河干流及主要支流为串联的核心城市形成了若干规模不一的高密度碳排放中心。③ 黄河流域碳排放呈显著的正的全局空间自相关,并形成了以晋陕蒙资源型城市为依托的中上游碳排放高-高集聚,以及上游甘青宁地区为主的碳排放低-低集聚。④ 经济发展水平对碳排放空间分异的影响力始终最强,其次为城镇化水平与人口规模,“GDP+”能源结构、能源强度与产业结构所主导的交互作用是导致碳排放持续增长的主要推动力。从构建流域生命共同体的视角出发,结合黄河流域自然环境特点与经济社会特征,并统筹上下游、左右岸、干支流之间的关系,分区施策与分时施策并行,对实现以碳减排为目标的黄河流域生态保护与可持续发展意义重大。
杜海波, 魏伟, 张学渊, 纪学朋. 黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J]. 地理研究, 2021, 40(7): 2051-2065.
DU Haibo, WEI Wei, ZHANG Xueyuan, JI Xuepeng. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin: Based on the DMSP/OLS and NPP/VIIRS nighttime light data[J]. GEOGRAPHICAL RESEARCH, 2021, 40(7): 2051-2065.
表4
单因子探测结果
影响因子 | q | ||||
---|---|---|---|---|---|
2000年 | 2005年 | 2010年 | 2015年 | 2018年 | |
经济发展水平(GDP) | 0.580*** | 0.618*** | 0.727*** | 0.632*** | 0.477*** |
人口规模(TP) | 0.233*** | 0.257** | 0.239*** | 0.324*** | 0.303*** |
城镇化率(UR) | 0.348*** | 0.487*** | 0.381*** | 0.401*** | 0.396*** |
能源结构(ES) | 0.195*** | 0.264*** | 0.268*** | 0.289*** | 0.290*** |
能源强度(EI) | 0.096 | 0.135* | 0.175* | 0.188** | 0.157* |
产业结构(IS) | 0.189*** | 0.232** | 0.179** | 0.127* | 0.154* |
流域(RB) | 0.160*** | 0.186*** | 0.167*** | 0.163*** | 0.163*** |
表5
影响因子交互作用探测结果
交互因子 | 2000 | 交互因子 | 2005 | 交互因子 | 2010 | 交互因子 | 2015 | 交互因子 | 2018 |
---|---|---|---|---|---|---|---|---|---|
GDP ∩ UR | 0.921 | GDP ∩ UR | 0.887 | GDP ∩ EI | 0.903 | GDP ∩ ES | 0.848 | UR ∩ IS | 0.818 |
TP ∩ UR | 0.904 | TP ∩ UR | 0.841 | GDP ∩ IS | 0.851 | GDP ∩ IS | 0.806 | GDP ∩ UR | 0.809 |
GDP ∩ EI | 0.834 | GDP ∩ EI | 0.785 | TP ∩ UR | 0.826 | GDP ∩ UR | 0.792 | GDP ∩ ES | 0.748 |
GDP ∩ ES | 0.801 | GDP ∩ ES | 0.776 | GDP ∩ RB | 0.793 | TP ∩ UR | 0.781 | TP ∩ UR | 0.744 |
GDP ∩ TP | 0.750 | UR ∩ EI | 0.727 | GDP ∩ ES | 0.791 | GDP ∩ EI | 0.759 | UR ∩ EI | 0.720 |
GDP ∩ IS | 0.747 | GDP ∩ IS | 0.716 | GDP ∩ TP | 0.784 | GDP ∩ TP | 0.717 | GDP ∩ IS | 0.703 |
GDP ∩ RB | 0.715 | UR ∩ IS | 0.692 | UR ∩ IS | 0.741 | UR ∩ EI | 0.716 | GDP ∩ TP | 0.702 |
[1] |
Wise M, Calvin K, Thomson A. et al. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324(5931): 1183-1186. DOI: 10.1126/science.1168475.
doi: 10.1126/science.1168475 |
[2] | 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话. http://www.qstheory.cn/dukan/qs/2019-10/15/c_1125102357.htm, 2019- 09- 18. |
[ Xi Jinping. Speech at the Symposium on Ecological Protection and High-quality Development in the Yellow River Basin. http://www.qstheory.cn/dukan/qs/2019-10/15/c_1125102357.htm, 2019- 09- 18.] | |
[3] |
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展. 地理学报, 2019, 74(12): 2431-2436.
doi: 10.11821/dlxb201912001 |
[ Lu Dadao, Sun Dongqi. Development and management tasks of the Yellow River Basin: A preliminary understanding and suggestion. Acta Geographica Sinica, 2019, 74(12): 2431-2436.]. DOI: 10.11821/dlxb201912001. | |
[4] |
赵荣钦, 黄贤金. 基于能源消费的江苏省土地利用碳排放与碳足迹. 地理研究, 2010, 29(9): 1639-1649.
doi: 10.11821/yj2010090010 |
[ Zhao Rongqin, Huang Xianjin. Carbon emission and carbon footprint of different land use types based on energy consumption of Jiangsu Province. Geographical Research, 2010, 29(9): 1639-1649.]. DOI: 10.3724/SP.J.1084.2010.00199. | |
[5] | 张金萍, 秦耀辰, 张丽君, 等. 黄河下游沿岸地市CO2排放的时空分异. 地理研究, 2012, 31(12): 2229-2239. |
[ Zhang Jinping, Qin Yaochen, Zhang Lijun, et al. The spatio-temporal differentiation of CO2 emissions in cities along the Lower Yellow River . Geographical Research, 2012, 31(12): 2229-2239.]. DOI: 10.11821/yj2012120010. | |
[6] |
Xu Q, Dong Y X, Yang R, et al. Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling. Journal of Cleaner Production, 2019, 214: 615-622. DOI: 10.1016/j.jclepro.2018.12.280.
doi: 10.1016/j.jclepro.2018.12.280 |
[7] |
程叶青, 王哲野, 张守志, 等. 中国能源消费碳排放强度及其影响因素的空间计量. 地理学报, 2013, 68(10): 1418-1431.
doi: 10.11821/dlxb201310011 |
[ Cheng Yeqing, Wang Zheye, Zhang Shouzhi, et al. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geographica Sinica, 2013, 68(10): 1418-1431.]. DOI: 10.11821/dlxb201310011. | |
[8] |
王少剑, 黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素. 地理学报, 2019, 74(6): 1131-1148.
doi: 10.11821/dlxb201906005 |
[ Wang Shaojian, Huang Yongyuan. Spatial spillover effect and driving forces of carbon emission intensity at city level in China. Acta Geographica Sinica, 2019, 74(6): 1131-1148.]. DOI: 10.11821/dlxb201906005. | |
[9] |
Liu Z, Guan D B, Moore S, et al. Steps to China's carbon peak. Nature, 2015, 522(7556): 279-281. DOI: 10.1038/522279a.
doi: 10.1038/522279a |
[10] |
王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测. 地理学报, 2020, 75(6): 1316-1330.
doi: 10.11821/dlxb202006016 |
[ Wang Shaojian, Gao Shuang, Huang Yongyuan, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model. Acta Geographica Sinica, 2020, 75(6): 1316-1330.]. DOI: 10.11821/dlxb202006016. | |
[11] | 张国兴, 高秀林, 汪应洛, 等. 中国节能减排政策的测量、协同与演变: 基于1978-2013年政策数据的研究. 中国人口·资源与环境, 2014, 24(12): 62-73. |
[ Zhang Guoxing, Gao Xiulin, Wang Yingluo, et al. Measurement, coordination and evolution of energy conservation and emission reduction policies in China: Based on the research of the policy data from 1978 to 2013. China Population·Resources and Environment, 2014, 24(12): 62-73.]. DOI: 10.3969/j.issn.1002-2104.2014.12.009. | |
[12] |
Cai B F, Guo H X, Cao L B, et al. Local strategies for China's carbon mitigation: An investigation of Chinese city-level CO2 emissions. Journal of Cleaner Production, 2018, 178: 890-902. DOI: 10.1016/j.jclepro.2018.01.054.
doi: 10.1016/j.jclepro.2018.01.054 |
[13] |
Liu L W, Chen C X, Zhao Y F, et al. China׳s carbon-emissions trading: Overview, challenges and future. Renewable and Sustainable Energy Reviews, 2015, 49: 254-266. DOI: 10.1016/j.rser.2015.04.076.
doi: 10.1016/j.rser.2015.04.076 |
[14] |
Zhou Y Y, Smith S J, Elvidge C D, et al. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment., 2014, 147: 173-185. DOI: 10.1016/j.rse.2014.03.004.
doi: 10.1016/j.rse.2014.03.004 |
[15] | 高义, 王辉, 王培涛, 等. 基于人口普查与多源夜间灯光数据的海岸带人口空间化分析. 资源科学, 2013, 35(12): 2517-2523. |
[ Gao Yi, Wang Hui, Wang Peitao, et al. Population spatial processing for Chinese coastal zones based on census and multiple night light data. Resources Science, 2013, 35(12): 2517-2523.]. DOI: CNKI:SUN:ZRZY.0.2013-12-024. | |
[16] |
Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. DOI: 10.1016/j.cageo.2009.01.009.
doi: 10.1016/j.cageo.2009.01.009 |
[17] | 韩向娣, 周艺, 王世新, 等. 基于夜间灯光和土地利用数据的GDP空间化. 遥感技术与应用, 2012, 27(3): 396-405. |
[ Han Xiangdi, Zhou Yi, Wang Shixin, et al. GDP Spatialization in China based on DMSP/OLS Data and Land Use Data. Remote Sensing Technology and Application, 2012, 27(3): 396-405.]. DOI: CNKI:SUN:YGJS.0.2012-03-012. | |
[18] |
吴健生, 牛妍, 彭建, 等. 基于DMSP/OLS夜间灯光数据的1995-2009年中国地级市能源消费动态. 地理研究, 2014, 33(4): 625-634.
doi: 10.11821/dlyj201404003 |
[ Wu Jiansheng, Niu Yan, Peng Jian, et al. Research on energy consumption dynamic among prefecture-level cities in China based on DMSP/OLS Nighttime Light. Geographical Research, 2014, 33(4): 625-634.]. DOI: 10.11821/dlyj201404003. | |
[19] |
He C Y, Ma Q, Li T, et al. Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data. Journal of Geographical Sciences, 2012, 22(1): 125-136. DOI: 10.1007/s11442-012-0916-3.
doi: 10.1007/s11442-012-0916-3 |
[20] |
Levin N, Kyba C C M, Zhang Q L, et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment, 2020, 237: 111443. DOI: 10.1016/j.rse.2019.111443.
doi: 10.1016/j.rse.2019.111443 |
[21] |
Elvidge C D, Imhoff M L, Baugh K E, et al. Night time lights of the world: 1994-1995. ISPRS Journal of Photogrammetry and Remote Sensing, 2001, 56(2): 81-99. DOI: 10.1016/S0924-2716(01)00040-5.
doi: 10.1016/S0924-2716(01)00040-5 |
[22] |
Doll C N H, Muller J P, Elvidge C D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO: A Journal of the Human Environment, 2000, 29(3): 157-162. DOI: 10.1579/0044-7447-29.3.157.
doi: 10.1579/0044-7447-29.3.157 |
[23] |
Ghosh T, Elvidge C D, Sutton P C, et al. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery. Energies, 2010, 3(12): 1895-1913. DOI: 10.3390/en3121895.
doi: 10.3390/en3121895 |
[24] | 苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理. 地理学报, 2013, 68(11): 1513-1526. |
[ Su Yongxian, Chen Xiuzhi, Ye Yuyao, et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries. Acta Geographica Sinica, 2013, 68(11): 1513-1526.]. DOI: 10.11821/dlxb201311007. | |
[25] |
王少剑, 苏泳娴, 赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素. 地理学报, 2018, 73(3): 414-428.
doi: 10.11821/dlxb201803003 |
[ Wang Shaojian, Su Yongxian, Zhao Yabo. Regional inequality, spatial spillover effects and influencing factors of China's city-level energy-related carbon emissions. Acta Geographica Sinica, 2018, 73(3): 414-428.]. DOI: 10.11821/dlxb201803003. | |
[26] |
Shi K F, Yu B L, Zhou Y Y, et al. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Applied Energy, 2019, 233-234: 170-181. DOI: 10.1016/j.apenergy.2018.10.050.
doi: 10.1016/j.apenergy.2018.10.050 |
[27] |
Zhao J C, Ji G X, Yue Y L, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Applied Energy, 2019, 235: 612-624. DOI: 10.1016/j.apenergy.2018.09.180.
doi: 10.1016/j.apenergy.2018.09.180 |
[28] | 樊杰, 王亚飞, 王怡轩. 基于地理单元的区域高质量发展研究: 兼论黄河流域同长江流域发展的条件差异及重点. 经济地理, 2020, 40(1): 1-11. |
[ Fan Jie, Wang Yafei, Wang Yixuan. High quality regional development research based on geographical units: Discuss on the difference in development conditions and priorities of the Yellow River Basin compared to the Yangtze River Basin. Economic Geography, 2020, 40(1): 1-11.]. DOI: 10.15957/j.cnki.jjdl.2020.01.001. | |
[29] |
覃成林, 李敏纳. 区域经济空间分异机制研究: 一个理论分析模型及其在黄河流域的应用. 地理研究, 2010, 29(10): 1780-1792.
doi: 10.11821/yj2010100006 |
[ Tan Chenglin, Li Minna. The mechanism of the spatial dissimilarity of regional economy: A theoretical model and its application in the Yellow River Valley. Geographical Research, 2010, 29(10): 1780-1792.]. DOI: 10.11821/yj2010100006. | |
[30] |
Liu X P, Ou J P, Wang S J, et al. Estimating spatiotemporal variations of city-level energy-related CO2 emissions: An improved disaggregating model based on vegetation adjusted nighttime light data. Journal of Cleaner Production, 2018, 177: 101-114. DOI: 10.1016/j.jclepro.2017.12.197.
doi: 10.1016/j.jclepro.2017.12.197 |
[31] | 施开放. 多尺度视角下的中国碳排放时空格局动态及影响因素研究: 基于DMSP-OLS夜间灯光遥感数据的分析. 上海: 华东师范大学博士学位论文, 2017: 30-31. |
[ Shi Kaifang. A multiscale analysis on spatiotemporal pattern of carbon emissions and its impact factors in China using DMSP-OLS data. Shanghai: Doctoral Dissertation of East China Normal University, 2017: 30-31.] | |
[32] | 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程. 北京: 科学出版社, 2019: 30-38. |
[ Wang Jinfeng, Liao Yilan, Liu Xin. Tutorial on Spatial Data Analysis. Beijing: Science Press, 2019: 30-38.] | |
[33] |
王劲峰, 徐成东. 地理探测器:原理与展望. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134.]. DOI: 10.11821/dlxb201701010. | |
[34] |
Liu J P, Zhang X B, Song X H. Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading : A case study of Beijing. Journal of Cleaner Production, 2018, 172: 2793-2810. DOI: 10.1016/j.jclepro.2017.11.133.
doi: 10.1016/j.jclepro.2017.11.133 |
[35] |
Wang S j, Shi C Y, Fang C L, et al. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 2019, 235: 95-105. DOI: 10.1016/j.apenergy.2018.10.083.
doi: 10.1016/j.apenergy.2018.10.083 |
[1] | 雒占福, 雷德宏, 李晓慧, 原悦. 河谷型城市居住环境剥夺的识别及其影响因素——以兰州市主城区为例[J]. 地理研究, 2021, 40(7): 1949-1962. |
[2] | 赵德昭, 许家伟. 河南省县域就地城镇化时空演变与影响机理研究[J]. 地理研究, 2021, 40(7): 1978-1992. |
[3] | 黄贤金, 陈逸, 赵雲泰, 史敏琦, 李天舒. 黄河流域国土空间开发格局优化研究——基于国土开发强度视角[J]. 地理研究, 2021, 40(6): 1554-1564. |
[4] | 肖晔, 赵林, 乔路明, 吴殿廷. 京津冀文化艺术产业空间格局演变及其影响因素[J]. 地理研究, 2021, 40(6): 1768-1784. |
[5] | 宋永永, 薛东前, 夏四友, 米文宝. 近40a黄河流域国土空间格局变化特征与形成机理[J]. 地理研究, 2021, 40(5): 1445-1463. |
[6] | 周春山, 徐期莹, 曹永旺. 基于理性选择理论的广州不同类型社区老年人独立居住特征及影响因素[J]. 地理研究, 2021, 40(5): 1495-1514. |
[7] | 方露露, 许德华, 王伦澈, 牛自耕, 张明. 长江、黄河流域生态系统服务变化及权衡协同关系研究[J]. 地理研究, 2021, 40(3): 821-838. |
[8] | 程晗蓓, 刘于琪, 田明, 李志刚. “居住不稳定性”对中国大城市流动人口健康的影响研究[J]. 地理研究, 2021, 40(1): 185-198. |
[9] | 齐宏纲, 戚伟, 刘盛和. 粤港澳大湾区人才集聚的演化格局及影响因素[J]. 地理研究, 2020, 39(9): 2000-2014. |
[10] | 朱佩娟, 郎泽慧, 贺清云, 张美芳, 吴国权. 长沙城市空间破碎化的格局特征及其影响因素[J]. 地理研究, 2020, 39(8): 1739-1754. |
[11] | 杨成凤, 韩会然, 宋金平. 非首都功能疏解背景下批发市场商户的搬迁意愿及区位再选择因素——以北京市动物园服装批发市场为例[J]. 地理研究, 2020, 39(8): 1755-1768. |
[12] | 叶士琳, 蒋自然, 祁新华. 长三角集装箱码头效率时空演化及其影响因素[J]. 地理研究, 2020, 39(8): 1782-1793. |
[13] | 崔盼盼, 赵媛, 郝丽莎, 夏四友, 许昕, 唐文敏. 中国能源行业碳排放强度下降过程中的省际减排成效评价[J]. 地理研究, 2020, 39(8): 1864-1878. |
[14] | 汪芳, 安黎哲, 党安荣, 韩建业, 苗长虹, 王静, 张广汉, 赵勇. 黄河流域人地耦合与可持续人居环境[J]. 地理研究, 2020, 39(8): 1707-1724. |
[15] | 杨文越, 梁斐雯, 曹小曙. 多尺度建成环境对居民通勤出行碳排放的影响——来自广州的实证研究[J]. 地理研究, 2020, 39(7): 1625-1639. |
|