地理研究 ›› 2021, Vol. 40 ›› Issue (7): 2102-2118.doi: 10.11821/dlyj020200680
• • 上一篇
收稿日期:
2020-07-20
接受日期:
2020-10-26
出版日期:
2021-07-10
发布日期:
2021-09-10
通讯作者:
王勇
作者简介:
王士博(1997-),女,黑龙江哈尔滨人,硕士,主要研究方向为环境与健康时空信息分析及应用研究。E-mail: m18811718028@163.com
基金资助:
Received:
2020-07-20
Accepted:
2020-10-26
Online:
2021-07-10
Published:
2021-09-10
Contact:
WANG Yong
摘要:
癌症已成为危害全球居民健康的重大民生问题,选取合适的空间插值方法分析小区域癌症数据的空间特征可对区域性癌症防控工作的有效开展提供依据。本研究以湖南省苏仙区2012和2016年以村为单位的肺癌死亡率数据为研究对象,以平均误差和均方根误差为评价指标,对反距离加权(IDW)、普通克里金(OK)、趋势面分析(TSA)、多元线性回归(MLR)与协同克里金(CK)五种典型空间插值方法进行精度效果对比及参数优选,并结合不同插值方法的优缺点,确定癌症数据的最优插值方法。结果表明:插值精度方面,CK法的均方根误差最小、插值精度最高,OK、IDW(幂值=1)和MLR次之,TSA(阶数=5)最低;插值效果方面,五种插值方法的实测值和预测值均显著相关,除CK外,其它四种方法均对死亡率低估程度较大,CK和OK插值结果的空间分布效果更好。同时考虑空间因素和影响因子的CK方法是小区域苏仙区2012年、2016年肺癌死亡率最优插值方法,应用该方法可对区域性癌症防控工作的有效开展提供最优的技术支撑。本论文的研究思路也可为小区域癌症数据空间插值方法及参数优选提供参考。
王士博, 王勇. 小区域癌症数据典型空间插值方法比较研究[J]. 地理研究, 2021, 40(7): 2102-2118.
WANG Shibo, WANG Yong. Comparative research on typical spatial interpolation methods for cancer data in small regions[J]. GEOGRAPHICAL RESEARCH, 2021, 40(7): 2102-2118.
表2
变量相关性分析及共线性分析结果
影响因素 | 相关系数 | 容忍度 | 方差膨胀因子 | |
---|---|---|---|---|
2012年 | 2016年 | |||
到河流距离 | -0.194* | -0.249** | 0.455 | 2.200 |
到道路距离 | -0.092 | -0.229* | 0.450 | 2.220 |
到采矿场距离 | -0.129 | -0.234* | 0.222 | 4.508 |
人口密度 | 0.025 | 0.249* | 0.262 | 3.818 |
地区生产总值 | 0.352** | 0.295** | 0.154 | 6.477 |
高程 | 0.208* | -0.340* | 0.110 | 9.111 |
坡度 | 0.127* | -0.394** | 0.128 | 7.796 |
植被覆盖度 | -0.164 | -0.464** | 0.288 | 3.473 |
年均温度 | -0.138 | 0.470* | 0.186 | 5.366 |
年均降雨 | 0.394** | -0.065 | 0.369 | 2.708 |
年均相对湿度 | -0.059 | -0.199** | 0.118 | 8.504 |
年均相对气压 | -0.297** | 0.133** | 0.171 | 5.855 |
PM2.5 | 0.126 | 0.272** | 0.141 | 7.084 |
Cd | -0.204* | -0.208* | 0.513 | 1.949 |
表3
基于空间自相关性插值方法交叉验证结果
插值方法 | 插值参数 | 平均误差ME | 均方根误差RMSE | |||
---|---|---|---|---|---|---|
2012年 | 反距离加权插值(IDW) | 幂值 = 1 | 0.044 | 0.616 | ||
幂值 = 2 | 0.033 | 0.619 | ||||
幂值 = 3 | 0.028 | 0.617 | ||||
趋势面分析(TSA) | 多项式的阶 = 3 | -0.005 | 0.727 | |||
多项式的阶 = 4 | -0.005 | 0.702 | ||||
多项式的阶 = 5 | 0.001 | 0.701 | ||||
多项式的阶 = 6 | 0.012 | 0.703 | ||||
普通克里金插值(OK) | 块金常数C0 | 偏基台值 C | 变程 Range | |||
球状Spherical | 0.058 | 0.737 | 14506.22 | 0.003 | 0.620 | |
指数Exponential | 0.001 | 0.837 | 18262.84 | 0.002 | 0.620 | |
高斯Gaussian | 0.181 | 0.619 | 12601.85 | 0.004 | 0.615 | |
2016年 | 反距离加权插值(IDW) | 幂值 = 1 | 0.001 | 0.800 | ||
幂值 = 2 | 0.021 | 0.807 | ||||
幂值 = 3 | 0.044 | 0.851 | ||||
趋势面分析(TSA) | 多项式的阶 = 3 | -0.004 | 0.946 | |||
多项式的阶 = 4 | -0.004 | 0.962 | ||||
多项式的阶 = 5 | 0.005 | 0.886 | ||||
多项式的阶 = 6 | -0.020 | 0.988 | ||||
普通克里金插值(OK) | 块金常数C0 | 偏基台值 C | 变程 Range | |||
球状Spherical | 0.016 | 1.160 | 10321.07 | -0.009 | 0.813 | |
指数Exponential | 0.010 | 1.240 | 13383.30 | -0.007 | 0.803 | |
高斯Gaussian | 0.244 | 0.954 | 9386.33 | -0.001 | 0.826 |
表4
逐步回归参数估计结果
影响因素 | 参数估计 | t | p | |
---|---|---|---|---|
2012年 | 截距 | 383.236 | 6.839 | 0.000 |
到河流距离 | -0.410 | -4.422 | 0.000 | |
高程 | -0.425 | -2.524 | 0.013 | |
坡度 | 0.321 | 1.934 | 0.050 | |
人口密度 | -0.293 | -2.441 | 0.016 | |
地区生产总值 | 0.216 | 1.466 | 0.014 | |
年均相对气压 | -1.122 | -7.851 | 0.000 | |
年均温度 | -0.281 | -2.199 | 0.030 | |
到矿区距离 | 0.371 | 2.848 | 0.005 | |
植被覆盖度 | -0.260 | -2.260 | 0.026 | |
年均相对湿度 | 0.580 | 3.438 | 0.001 | |
2016年 | 截距 | -97.284 | -3.028 | 0.003 |
到道路距离 | 0.164 | 1.558 | 0.022 | |
高程 | -0.401 | -2.867 | 0.005 | |
地区生产总值 | 0.195 | 2.065 | 0.041 | |
到矿区距离 | -0.339 | -3.445 | 0.001 | |
年均相对湿度 | 0.596 | 2.333 | 0.021 | |
年均温度 | 1.157 | 3.528 | 0.001 | |
年均降雨 | 0.692 | 3.600 | 0.000 | |
Cd | -0.395 | -1.997 | 0.048 |
表5
影响因素主成分分析结果
类别 | 第一主成分 | 第二主成分 | 第三主成分 | 第四主成分 | 第五主成分 | 第六主成分 | 第七主成分 | |
---|---|---|---|---|---|---|---|---|
2012年 | 特征值 | 4.73600 | 2.22700 | 1.28400 | 0.61000 | 0.27300 | 0.11200 | 0.07300 |
贡献度 | 0.57326 | 0.27054 | 0.07629 | 0.02934 | 0.02093 | 0.01745 | 0.01219 | |
累计贡献度 | 0.57326 | 0.84380 | 0.92009 | 0.94943 | 0.97036 | 0.98781 | 1 | |
2016年 | 特征值 | 2.96600 | 1.87900 | 0.73000 | 0.66200 | 0.29200 | 0.15700 | 0.07000 |
贡献度 | 0.57494 | 0.29225 | 0.07082 | 0.03242 | 0.01746 | 0.00783 | 0.00399 | |
累计贡献度 | 0.57494 | 0.86749 | 0.93831 | 0.97072 | 0.98818 | 0.99601 | 1 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA-A Cancer Journal for Clinicians, 2018, 68(6): 394-424. DOI: 10.3322/caac.21609.
doi: 10.3322/caac.v68.6 |
[2] |
Chen Wanqing, Xia Changfa, Zheng Rongshou, et al. Disparities by province, age, and sex in site-specific cancer burden attributable to 23 potentially modifiable risk factors in China: A comparative risk assessment. Lancet Glob Health, 2019, 7(2): e257-e269. DOI: 10.1016/s2214-109x(18)30488-1.
doi: 10.1016/S2214-109X(18)30488-1 |
[3] | Etzel C, Zhang Q, Schabath M, et al. Building a comprehensive quantitative risk assessment model for lung cancer. Lung Cancer, 2005, 49(2): S21-S21. DOI: 10.1016/S0169-5002(05)80185-0. |
[4] | 王佳欣, 胡茂桂, 于石成, 等. 基于面到面泊松克里格方法的手足口病发病率空间分布降尺度研究. 中华流行病学杂志, 2017, 38(9): 1201-1205. |
[ Wang Jiaxin, Hu Maogui, Yu Shicheng, et al. Downscaling research of spatial distribution of incidence of hand foot and mouth disease based on area-to-area Poisson Kriging method. Chinese Journal of Epidemiology, 2017, 38(9): 1201-1205.]. DOI: 10.3760/cma.j.issn.0254-6450.2017.09.012. | |
[5] | 曲宸绪, 姜勇, 武燕萍, 等. 使用反距离权重内插法绘制中国1990年代肿瘤分布地图. 中华流行病学杂志, 2006, 27(3): 230-233. |
[ Qu Chenxu, Jiang Yong, Wu Yanping, et al. Study on the development of a choropleth atlas on cancer mortality using the inverse distance weight interpolation in the 1990′s. Chinese Journal of Epidemiology, 2006, 27(3): 230-233.]. DOI: 10.3760/j.issn:0254-6450.2006.03.011. | |
[6] |
Smith ND, Prasad SM, Patel AR, et al. Bladder cancer mortality in the United States: A geographic and temporal analysis of socioeconomic and environmental factors. Journal of Urology, 2016, 195(2): 290-296. DOI: 10.1016/j.juro.2015.07.091.
doi: 10.1016/j.juro.2015.07.091 |
[7] |
Bristow RE, Chang J, Ziogas A, et al. Spatial analysis of advanced-stage ovarian cancer mortality in California. American Journal of Obstetrics and Gynecology, 2015, 213(1): 43.e1-43.e8. DOI: 10.1016/j.ajog.2015.01.045.
doi: 10.1016/j.ajog.2015.01.045 |
[8] | Chen Yixian, Jiang Xiaosan, Wang Yong, et al. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Safety & Environmental Protection, 2018, 113: 204-219. DOI: 10.1016/j.psep.2017.10.008. |
[9] |
Wang Fahui. Spatial clusters of cancers in Illinois 1986-2000. Journal of Medical Systems, 2004, 28(3): 237-56. DOI: 10.1023/b:joms.0000032842.7864.38.
pmid: 15446615 |
[10] |
Goovaerts P. Geostatistical analysis of disease data: Accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging. International Journal of Health Geographics, 2006, 5: 52-82. DOI: 10.1186/1476-072X-5-52.
pmid: 17137504 |
[11] |
Ding Qian, Cheng Gong, Wang Yong, et al. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 2017, 578: 577-585. DOI: 10.1016/j.scitotenv.2016.11.001.
doi: 10.1016/j.scitotenv.2016.11.001 |
[12] |
Song Daping, Jiang Dong, Wang Yong, et al. Study on association between spatial distribution of metal mine and disease mortality: A case study in Suxian Diatrict, South China. International Journal of Environmental Research and Public Health, 2013, 10(10): 5163-5177. DOI: 10.3390/ijerph10105163.
doi: 10.3390/ijerph10105163 |
[13] | 徐新良. 中国年度植被指数(NDVI)空间分布数据集. 中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI ) , 2018. |
[ Xu Xinliang. China Annual Vegetation Index (NDVI) Spatial Distribution Data Set. Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences, http://www.resdc.cn/DOI, 2018.]. DOI: 10.12078/2018060601. | |
[14] | 徐新良. 中国GDP空间分布公里网格数据集. 中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI ) , 2017. |
[ Xu Xinliang. China's GDP spatial distribution kilometer grid dataset. Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences(http://www.resdc.cn/DOI ) , 2017.]. DOI: 10.12078/2017121102. | |
[15] |
Zhuang Dafang, Du Haiwen, Wang Yong, et al. Probing the spatial cluster of Meriones unguiculatus using the nest flea index based on GIS technology. Acta Tropica, 2016, 163: 157-166. DOI: 10.1016/j.actatropica.2016.08.007.
doi: 10.1016/j.actatropica.2016.08.007 |
[16] | 王劲峰, 廖一兰, 刘鑫. 空间数据分析教程. 北京: 科学出版社, 2010. |
[ Wang Jinfeng, Liao Yilan, Liu Xin. Spatial Data Analysis Tutorial. Beijing: Science Press, 2010.] | |
[17] | 赵颖慧, 吕泓辰, 甄贞, 等. 黑龙江省气象因子插值优化及与落叶松NPP相关性分析. 南京林业大学学报(自然科学版), 2018, 42(3): 1-9. |
[ Zhao Yinghui, Lv Hongchen, Zhen Zhen, et al. Interpolation optimization of meteorological factors and its correlation analysis with the larch NPP in Heilongjiang province, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 1-9.]. DOI: 10.3969/j.issn.1000-2006.201709002. | |
[18] | 牛腾, 岳德鹏, 李倩, 等. 基于GLM-PSO-coKriging模型的地表形变研究. 地球信息科学学报, 2018, 20(11): 43-55. |
[ Niu Teng, Yue Depeng, Li Qian, et al. Research on surface deformation based on GLM-PSO-coKriging model. Journal of Geo-information Science, 2018, 20(11): 43-55.]. DOI: 10.12082/dqxxkx.2018.180289. | |
[19] |
Ghanbarpour M R, Goorzadi M, Vahabzade G. Spatial variability of heavy metals in surficial sediments: Tajan River Watershed, Iran. Sustainability of Water Quality and Ecology, 2013, 1-2: 48-58. DOI: 10.1016/j.swaqe.2014.04.002.
doi: 10.1016/j.swaqe.2014.04.002 |
[20] |
Wong Tzu-Tsung. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 2015, 48(9): 2839-2846. DOI: 10.1016/j.patcog.2015.03.009.
doi: 10.1016/j.patcog.2015.03.009 |
[21] |
Arslan H, Turan N A. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Environmental Monitoring and Assessment, 2015, 187(8): 516. DOI: 10.1007/s10661-015-4725-x.
doi: 10.1007/s10661-015-4725-x pmid: 26202813 |
[22] | 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征. 环境科学, 2016, 37(2): 710-716. |
[ Wang Youqi, Bai Yiru, Wang Jianyu. Distribution of urban soil heavy metal and pollution evaluation in different functional zones of Yinchuan city. Environmental Science, 2016, 37(2): 710-716.]. DOI: 10.13227/j.hjkx.2016.02.041. | |
[23] |
Oleksii Motorykin, Melissa M. Matzke, Katrina M. Waters, et al. Association of carcinogenic polycyclic aromatic hydrocarbon emissions and smoking with lung cancer mortality rates on a global scale. Environmental Science & Technology, 2013, 47(7): 3410-3416. DOI: 10.1021/es305295d.
doi: 10.1021/es305295d |
[24] |
Haoran Z, Nitin Kumar Tripathi. Geospatial hot spot analysis of lung cancer patients correlated to fine particulate matter (PM 2.5) and industrial wind in Eastern Thailand. Journal of Cleaner Production, 2018, 170: 407-424. DOI: 10.1016/j.jclepro.2017.09.185.
doi: 10.1016/j.jclepro.2017.09.185 |
[25] | 黄群茵, 张奕彩, 陈映融, 等. 应用空间资讯技术以探讨环境绿蔽度与肺癌发生之关联: 以大台北及大嘉义地区为例. 航测及遥测学刊, 2019, 24(1): 13-24. |
[ Huang Qunyin, Zhang Yicai, Chen Yingrong, et al. Association between surrounding greenness and lung cancer incidence using geospatial information technologies: A case study of Taipei and Chiayi areas. Journal of Photogrammetry and Remote Sensing, 2019, 24(1): 13-24.]. DOI: 10.6574/JPRS.201903_24(1).0002. | |
[26] | 卢月明, 王亮, 仇阿根, 等. 一种基于主成分分析的协同克里金插值方法. 测绘通报, 2017, (11): 51-57. |
[ Lu Yueming, Wang Liang, Qiu Agen, et al. A CoKriging Interpolation Method based on principal component analysis. Bulletin of Surveying and Mapping, 2017, (11): 51-57.]. DOI: 10.13474/j.cnki.11-2246.2017.0347. | |
[27] | Ji Wei, Wang Yong, Zhuang Dafang. Spatial distribution differences in PM2.5 concentration between heating and non-heating seasons in Beijing, China. Environmental Pollution, 2019, 24: 574-583. DOI: 10.1016/j.envpol.2019.01.002. |
[28] | 颜仕鹏, 许可葵, 肖海帆, 等. 2010-2015年湖南省恶性肿瘤空间流行病学特征分析. 中国肿瘤, 2019, 28(11): 832-837. |
[ Yan Shipeng, Xu Kekui, XIAO Haifan, et al. Spatial epidemiology of malignant tumors in Hunan province from 2010 to 2015. China Cancer, 2019, 28(11): 832-837.]. DOI: 10.11735/j.issn.1004-0242.2019.11.A005. | |
[29] |
Ding Qian, Wang Yong, Zhuang Dafang. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 2018, 212: 23-31. DOI: 10.1016/j.jenvman.2018.01.074.
doi: 10.1016/j.jenvman.2018.01.074 |
[30] |
Zhen Jinchun, Pei Tao, Xie Shuyun. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil. Science of the Total Environment, 2019, 659: 363-371. DOI: 10.1016/j.scitotenv.2018.12.330.
doi: 10.1016/j.scitotenv.2018.12.330 |
[31] | 倪书华. 空间统计学及其在公共卫生领域中的应用. 汕头大学学报(自然科学版), 2014, 29(4): 61-67. |
[ Ni Shuhua. Spatial statistics and its application in the field of public health. Journal of Shantou University (Natural Science), 2014, 29(4): 61-67. ]. DOI: CNKI:SUN:STDX.0.2014-04-010. | |
[32] |
Sahar Hassani, Harald Martens, EI Mostafa Qannari, et al. Degrees of freedom estimation in principal component analysis and consensus principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2012, 118: 246-259. DOI: 10.1016/j.chemolab.2012.05.015.
doi: 10.1016/j.chemolab.2012.05.015 |
[33] |
Kay Sumfleth, Rainer Duttmann. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, 2008, 8(5): 485-501. DOI: 10.1016/j.ecolind.2007.05.005.
doi: 10.1016/j.ecolind.2007.05.005 |
[1] | 史坤博, 杨永春, 白硕, 杨欣傲. 成都市体验性网络团购市场发展的空间特征[J]. 地理研究, 2016, 35(1): 108-122. |
[2] | 郭春霞, 诸云强, 孙伟. 不同时间尺度、季节的气温数据空间平稳特征及其对插值结果的影响[J]. 地理研究, 2015, 34(9): 1675-1684. |
[3] | 易湘生, 李国胜, 尹衍雨, 彭景涛. 土壤厚度的空间插值方法比较——以青海三江源地区为例[J]. 地理研究, 2012, 31(10): 1793-1805. |
[4] | 王发曾, 吕金嵘. 中原城市群城市竞争力的评价与时空演变[J]. 地理研究, 2011, 30(1): 49-60. |
[5] | 孟 斌, 尹卫红, 张景秋, 张文忠. 北京宜居城市满意度空间特征[J]. 地理研究, 2009, 28(5): 1318-1326. |
[6] | 孔云峰, 仝文伟. 降雨量地面观测数据空间探索与插值方法探讨[J]. 地理研究, 2008, 27(5): 1097-1108. |
[7] | 林忠辉, 莫兴国. 一种改进的生成区域日降水场的方法及精度分析[J]. 地理研究, 2008, 27(5): 1161-1168. |
[8] | 孟斌, 张景秋, 王劲峰, 张文忠, 郝卫秋. 空间分析方法在房地产市场研究中的应用——以北京市为例[J]. 地理研究, 2005, 24(6): 956-964. |
[9] | 朱会义, 刘述林, 贾绍凤. 自然地理要素空间插值的几个问题[J]. 地理研究, 2004, 23(4): 425-432. |
|