地理研究 ›› 2021, Vol. 40 ›› Issue (7): 1935-1948.doi: 10.11821/dlyj020200685
王波1,2,3(), 甄峰4,5(
), 张姗琪4,5, 黄学锋6, 周亮7
收稿日期:
2020-07-20
接受日期:
2020-11-09
出版日期:
2021-07-10
发布日期:
2021-09-10
通讯作者:
甄峰
作者简介:
王波(1987-),男,湖南衡阳人,博士,副教授,硕士生导师,研究方向为城市地理与区域规划、智慧城市研究。E-mail: wangbo68@mail.sysu.edu.cn
基金资助:
WANG Bo1,2,3(), ZHEN Feng4,5(
), ZHANG Shanqi4,5, HUANG Xuefeng6, ZHOU Liang7
Received:
2020-07-20
Accepted:
2020-11-09
Online:
2021-07-10
Published:
2021-09-10
Contact:
ZHEN Feng
摘要:
建设充满活力的城市空间得到地理和城乡规划学者的广泛关注。随着空气污染问题的加剧,空气质量影响居民在城市空间中的活动,但鲜有研究考察空气污染与城市活力的定量关系。基于广州市2019年新浪微博签到记录、日气象和空气质量数据、以及建成环境数据,本研究构建以街道为空间单元、以天为时间单元的面板数据,通过标准差椭圆(SDE)以及面板回归模型测度空气污染对城市活力的抑制效应以及该抑制效应在不同建成环境上的异质性。研究得到以下结论:① 城市活力SDE面积随空气质量指数(AQI)上升而收缩,轻度污染和中度污染的城市活力SDE面积仅为空气质量优的约80%和30%。② 运用空间面板回归模型控制街道的空间关联性后,空气质量指数(AQI)对城市活力具有明显负向影响,AQI每增加1个单位,日活动强度减少约0.10次/10 km2;当空气质量恶化到中等污染后,AQI每增加1个单位,日活动强度减少约0.14次/10 km2。③ 空气污染对城市活力的抑制效应在不同建成环境上存在异质性,POI密度、离城市中心距离强化空气污染对城市活力的抑制效应,而地铁站密度、道路交叉口密度、土地利用混合度则弱化空气污染对城市活力的抑制效应。本研究有助于更好厘清空气污染、建成环境与城市活力的关系,并为优化建成环境以缓减空气污染对城市活力抑制效应提供分析支撑。
王波, 甄峰, 张姗琪, 黄学锋, 周亮. 空气污染对城市活力的影响及其建成环境异质性——基于大数据的分析[J]. 地理研究, 2021, 40(7): 1935-1948.
WANG Bo, ZHEN Feng, ZHANG Shanqi, HUANG Xuefeng, ZHOU Liang. The impact of air pollution on urban vibrancy and its built environment heterogeneity: An empirical analysis based on big data[J]. GEOGRAPHICAL RESEARCH, 2021, 40(7): 1935-1948.
表1
变量定义与描述性统计
变量 | 描述 | 观测量 | 均值 | 方差 | 最小值 | 最大值 | |
---|---|---|---|---|---|---|---|
因变量 | 活动强度 | | 54750 | 19.66 | 50.58 | 0.00 | 3014.00 |
控制变量(气象&日期属性) | 风速 | 日平均风速 | 2190 | 1.83 | 0.80 | 0.45 | 7.69 |
气温 | 日平均气温 | 2190 | 22.81 | 5.84 | 6.94 | 34.06 | |
降水 | 日降水情况,虚拟变量:1=暴雨及以上,0=其他 | 2190 | 0.03 | 0.18 | 0 | 1.00 | |
日期 | 非工作日,虚拟变量:1=非工作日(包括双休日与节假日),0=工作日 | 365 | 0.31 | 0.46 | 0 | 1.00 | |
解释变量(空气污染&建成环境因素) | AQI | 日空气质量指数 | 3650 | 68.82 | 28.58 | 20.08 | 167.92 |
d | 中度污染,虚拟变量:1=中度污染及以上,0=其他 | 3650 | 0.05 | 0.07 | 0 | 1.00 | |
POI密度 | | 150 | 520.76 | 557.14 | 1.98 | 2428.72 | |
地铁站密度 | | 150 | 0.70 | 1.21 | 0.00 | 6.79 | |
道路交叉口 密度 | | 150 | 13.80 | 15.26 | 0.00 | 70.89 | |
区位 | | 150 | 16.70 | 16.39 | 0.49 | 84.04 | |
用地混合度 | | 150 | 0.71 | 0.14 | 0.33 | 0.97 |
表2
基本面板及空间面板回归模型结果
变量 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | Coef. | S.E. | ||||||
AQI | -0.105*** | 0.008 | -0.097*** | 0.008 | -0.104*** | 0.008 | -0.344*** | 0.047 | -0.313*** | 0.047 | -0.310*** | 0.047 | |||||
AQI*d | -0.035* | 0.017 | -0.033* | 0.016 | -0.035* | 0.017 | -0.048** | 0.017 | -0.045** | 0.017 | -0.048** | 0.018 | |||||
风速 | -0.583*** | 0.126 | -0.539*** | 0.126 | -0.577*** | 0.136 | -0.542*** | 0.126 | -0.504*** | 0.126 | -0.537*** | 0.134 | |||||
气温 | 0.831*** | 0.110 | 0.765*** | 0.110 | 0.819*** | 0.119 | 0.765*** | 0.110 | 0.709*** | 0.110 | 0.757*** | 0.118 | |||||
(气温)2 | -0.012*** | 0.003 | -0.011*** | 0.003 | -0.012*** | 0.003 | -0.011*** | 0.003 | -0.010** | 0.003 | -0.011** | 0.003 | |||||
降水 (非暴雨=ref.) | -2.177*** | 0.334 | -2.010*** | 0.334 | -2.146*** | 0.356 | -2.081*** | 0.335 | -1.935*** | 0.334 | -2.056*** | 0.355 | |||||
日期 (非工作日=ref.) | 0.999** | 0.383 | 0.921* | 0.382 | 0.994* | 0.413 | 0.944* | 0.382 | 0.877* | 0.381 | 0.941* | 0.409 | |||||
AQI×POI密度 | — | — | — | — | — | — | -0.0001** | 0.000 | -0.000** | 0.000 | -0.000** | 0.000 | |||||
AQI×地铁站密度 | — | — | — | — | — | — | 0.030*** | 0.006 | 0.030*** | 0.006 | 0.030*** | 0.006 | |||||
AQI×交叉口密度 | — | — | — | — | — | — | 0.001* | 0.000 | 0.001* | 0.000 | 0.001* | 0.000 | |||||
AQI×区位 | — | — | — | — | — | — | -0.002*** | 0.000 | -0.002*** | 0.000 | -0.002*** | 0.000 | |||||
AQI×用地混合度 | — | — | — | — | — | — | 0.301*** | 0.053 | 0.274*** | 0.053 | 0.262*** | 0.053 | |||||
| — | — | 0.076*** | 0.007 | 0.076*** | 0.007 | — | — | 0.070*** | 0.007 | 0.068*** | 0.007 | |||||
街道固定效应 | 控制 | ||||||||||||||||
季节固定效应 | 控制 | ||||||||||||||||
天固定效应 | 控制 | ||||||||||||||||
N | 54750 | ||||||||||||||||
模型拟合度 | |||||||||||||||||
Adjusted R2 | 0.086 | 0.090 | 0.086 | 0.256 | 0.265 | 0.264 | |||||||||||
AIC | 562419.900 | 562294.100 | 562296.200 | 562241.700 | 562138.800 | 562144.600 | |||||||||||
Log-likelihood | -281199.000 | -281135.100 | -281136.100 | -281104.900 | -281052.400 | -281055.300 |
[1] | Jacbos J. The Death and Life of Great American Cities. New York: Random House, 1961: 99. |
[2] | Lynch K. The Image of the City. Boston: The MIT Press, 1960: 46. |
[3] |
Wu C, Ye X, Ren F, et al. Check-in behavior and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities, 2018, 77: 104-116. DOI: 10.1016/j.cities.2018.01.017.
doi: 10.1016/j.cities.2018.01.017 |
[4] |
Glaeser E. Cities, productivity, and quality of life. Science, 2011, 333(6042): 592-594. DOI: 10.1126/science.1209264.
doi: 10.1126/science.1209264 |
[5] | Gehl J. Life between Buildings: Using Public Space. Washington: Island Press, 2011, 31. |
[6] |
Wu J, Ta N, Song Y, et al. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing. Cities, 2018, 74: 100-108. DOI: 10.1016/j.cities.2017.11.008.
doi: 10.1016/j.cities.2017.11.008 |
[7] |
Long Y, Huang C. Does block size matter? The impact of urban design on economic vitality for Chinese cities. Environment and Planning B: Urban Analytics and City Science, 2019, 46(3): 406-422. DOI: 10.1177/2399808317715640.
doi: 10.1177/2399808317715640 |
[8] |
Mehta V. Lively streets: Determining environmental characteristics to support social behavior. Journal of Planning Education and Research. 2007, 27(2): 165-187. DOI: 10.1177/0739456X07307947.
doi: 10.1177/0739456X07307947 |
[9] |
Chai Y, Ta N, Ma J. The socio-spatial dimension of behavior analysis: Frontiers and progress in Chinese behavior geography. Journal of Geographical Sciences, 2016, 26(8): 1243-1260. DOI: 10.1007/s11442-016-1324-x.
doi: 10.1007/s11442-016-1324-x |
[10] |
王波, 卢佩莹, 甄峰. 智慧社会下的城市地理学研究: 基于居民活动的视角. 地理研究, 2018, 37(10): 2075-2086.
doi: 10.11821/dlyj201810015 |
[ Wang Bo, Loo Becky, Zhen Feng. Urban geography research in the e-society: A perspective from human activity. Geographical Research, 2018, 37(10): 2075-2086.]. DOI: 10.11821/dlyj201810015. | |
[11] |
Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 2015, 105(3): 512-530. DOI: 10.1080/00045608.2015.1018773.
doi: 10.1080/00045608.2015.1018773 |
[12] |
甄峰, 王波. “大数据”热潮下人文地理学研究的再思考. 地理研究, 2015, 34(5): 803-811.
doi: 10.11821/dlyj201505001 |
[ Zhen Feng, Wang Bo. Rethinking human geography in the age of big data. Geographical Research, 2015, 34(5): 803-811.]. DOI: 10.11821/dlyj201505001. | |
[13] |
Yuan Y, Raubal M, Liu Y. Correlating mobile phone usage and travel behavior: A case study of Harbin, China. Computers, Environment and Urban Systems, 2012, 36(2): 118-130. DOI: 10.1016/j.compenvurbsys.2011.07.003.
doi: 10.1016/j.compenvurbsys.2011.07.003 |
[14] |
罗桑扎西, 甄峰. 基于手机数据的城市公共空间活力评价方法研究: 以南京市公园为例. 地理研究, 2019, 38(7): 1594-1608.
doi: 10.11821/dlyj020180756 |
[ Luo Sangzhaixi, Zhen Feng. How to measure public space vitality based on mobile phone data: An empirical analysis of Nanjing's parks. Geographical Research, 2019, 38(7): 1594-1608.]. DOI: 10.11821/dlyj020180756. | |
[15] |
钟炜菁, 王德, 谢栋灿, 等. 上海市人口分布与空间活动的动态特征研究: 基于手机信令数据的探索. 地理研究, 2017, 36(5): 972-984.
doi: 10.11821/dlyj201705013 |
[ Zhong Weijing, Wang De, Xie Dongcan, et al. Dynamic characteristics of Shanghai's population distribution using cell phone signaling data. Geographical Research, 2017, 36(5): 972-984.]. DOI: 10.11821/dlyj201705013. | |
[16] | 钮心毅, 吴莞姝, 李萌. 基于LBS定位数据的建成环境对街道活力的影响及其时空特征研究. 国际城市规划, 2019, 34(1): 28-37. |
[ Niu Xinyi, Wu Wanshu, Li Meng. Influence of built environment on street vitality and its spatiotemporal characteristics based on LBS positioning data. Urban Planning International, 2019, 34(1): 28-37.]. DOI: 10.22217/upi.2018.495. | |
[17] | 周素红, 郝新华, 柳林. 多中心化下的城市商业中心空间吸引衰减率验证: 深圳市浮动车GPS 时空数据挖掘. 地理学报, 2015, 69(12): 1810-1820. |
[ Zhou Suhong, Hao Xinhua, Liu Lin. Validation of spatial decay law caused by urban commercial center's mutual attraction in polycentric city: Spatio-temporal data mining of floating cars' GPS data in Shenzhen. Acta Geographica Sinica, 2015, 69(12): 1810-1820.]. DOI: 10.11821/dlxb201412007. | |
[18] | 申悦, 柴彦威, 郭文博. 北京郊区居民一周时空间行为的日间差异. 地理研究, 2013, 32(4): 701-710. |
[ Shen Yue, Chai Yanwei, Guo Wenbo. Day-to-day variability in activity-travel behavior based on GPS data: A case study in suburbs of Beijing. Geographical Research, 2013, 32(4): 701-710.]. DOI: 10.11821/yj2013040013. | |
[19] |
Wang B, Zhen F, Wei Z, et al. A theoretical framework and methodology for urban activity spatial structure in e-society: Empirical evidence for Nanjing city, China. Chinese Geographical Science, 2015, 25(6): 672-683. DOI: 10.1007/s11769-015-0751-4.
doi: 10.1007/s11769-015-0751-4 |
[20] |
Zhen F, Cao Y, Qin X, et al. Delineation of an urban agglomeration boundary based on Sina Weibo microblog 'check-in' data: A case study of the Yangtze River Delta. Cities, 2017, 60: 180-191. DOI: 10.1016/j.cities.2016.08.014.
doi: 10.1016/j.cities.2016.08.014 |
[21] |
Malleson N, Birkin M. Analysis of crime patters through the integration of an agent-based model and a population microsimulation. Computers, Environment and Urban Systems, 2012, 36(6): 551-561. DOI: 10.1016/j.compenvurbsys.2012.04.003.
doi: 10.1016/j.compenvurbsys.2012.04.003 |
[22] |
王波, 甄峰, 张浩. 基于签到数据的城市活动时空间动态变化及区划研究. 地理科学, 2015, 35(2): 151-160.
doi: 10.13249/j.cnki.sgs.2015.02.151 |
[ Wang Bo, Zhen Feng, Zhang Hao. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina Web. Scientia Geographica Sinica, 2015, 35(2): 151-160.]. DOI: 10.13249/j.cnki.sgs.2015.02.151. | |
[23] |
塔娜, 曾屿恬, 朱秋雨, 等. 基于大数据的上海中心城区建成环境与城市活力关系分析. 地理科学, 2020, 40(1): 60-68.
doi: 10.13249/j.cnki.sgs.2020.01.008 |
[ Ta Na, Zeng Yutian, Zhu Qiuyu, et al. Relationship between built environment and urban vitality in Shanghai downtown area based on big data. Scientia Geographica Sinica, 2020, 40(1): 60-68.]. DOI: 10.13249/j.cnki.sgs.2020.01.008. | |
[24] |
秦萧, 甄峰, 朱寿佳, 等. 基于网络口碑度的南京城区餐饮业空间分布格局研究: 以大众点评网为例. 地理科学, 2014, 34(7): 810-817.
doi: 10.13249/j.cnki.sgs.2014.07.810 |
[ Qin Xiao, Zhen Feng, Zhu Shoujia, et al. Spatial pattern of catering industry in Nanjing urban area based on the degree of public praise from internet: A case study of dianping.com. Scientia Geographica Sinica, 2014, 34(7): 810-817.]. DOI: 10.13249/j.cnki.sgs.2014.07.810. | |
[25] |
Jin X, Long Y, Sun W, et al. Evaluating cities' vitality and identifying ghost cities with emerging geographical data. Cities, 2017, 63: 98-109. DOI: 10.1016/j.cities.2017.01.002.
doi: 10.1016/j.cities.2017.01.002 |
[26] | 甄峰, 王波, 秦萧, 等. 基于大数据的城市研究与规划方法创新. 北京: 中国建筑工业出版社, 2015: 16. |
[ Zhen Feng, Wang Bo, Qin Xiao, et al. Urban Studies and Innovation in Urban Planning Method Based on Big Data. Beijing: China Architecture & Building Press, 2015, 16.] | |
[27] |
Zheng S, Kahn M E. Understanding China's urban pollution dynamics. Journal of Economic Literature, 2013, 51(3): 731-772. DOI: 10.1257/jel.51.3.731.
doi: 10.1257/jel.51.3.731 |
[28] |
王振波, 梁龙武, 王旭静. 中国城市群地区PM2.5时空演变格局及其影响因素. 地理学报, 2019, 74(12): 2614-2630.
doi: 10.11821/dlxb201912014 |
[ Wang Zhenbo, Liang Longwu, Wang Xujing. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations . Acta Geographic Sinica, 2019, 74(12): 2614-2630.]. DOI: 10.11821/dlxb201912014. | |
[29] |
周亮, 周成虎, 杨帆, 等. 2000-2011年中国PM2.5时空演化特征及驱动因素解析. 地理学报, 2017, 72(11): 2079-2092.
doi: 10.11821/dlxb201711012 |
[ Zhou Liang, Zhou Chenghu, Yang Fan, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011 . Acta Geographic Sinica, 2017, 72(11): 2079-2092.]. DOI: 10.11821/dlxb201711012. | |
[30] | Chen Y, Ebenstein A, Greenstone M, et al. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy. Proceedings of the National Academy of Sciences, 2013, 110(32): 12936-12941.]. DOI: 10.1073/pnas.1300018110. |
[31] |
Bevc C A, Marshall B K, Picou J S. Environmental justice and toxic exposure: Toward a spatial model of physical health and psychological well-being. Social Science Research, 2007, 36(1): 48-67. DOI: 10.1016/j.ssresearch.2005.11.001.
doi: 10.1016/j.ssresearch.2005.11.001 |
[32] |
马静, 柴彦威, 符婷婷. 居民时空行为与环境污染暴露对健康影响的研究进展. 地理科学进展, 2017, 36(10): 1260-1269.
doi: 10.18306/dlkxjz.2017.10.008 |
[ Ma Jing, Chai Yanwei, Fu Tingting. Progress of research on the health impact of people's space-time behavior and environmental pollution exposure. Progress in Geography, 2017, 36(10): 1260-1269.]. DOI: 10.18306/dlkxjz.2017.10.008. | |
[33] |
Ma J, Tao Y, Kwan M P, et al. Assessing mobility-based real-time air pollution exposure in space and time using smart sensors and GPS trajectories in Beijing. Annals of the American Association of Geographers. 2020, 110(2): 434-448. DOI: 10.1080/24694452.2019.1653752.
doi: 10.1080/24694452.2019.1653752 |
[34] | 曹小曙, 闵家楠, 黄晓燕. 降雨和空气污染对城市居民公共自行车使用的影响研究: 以西安市为例. 人文地理, 2019, 34(1): 151-158. |
[ Cao Xiaoshu, Min Jianan, Huang Xiaoyan. The influence of rainfall and air pollution on public bicycle usage: A case study of Xi'an. Human Geography, 2019, 34(1): 151-158.]. DOI: 10.13959/j.issn.1003-2398.2019.01.019. | |
[35] |
Yan L, Duarte F, Wang D, et al. Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities, 2019, 91: 116-125. DOI: 10.1016/j.cities.2018.11.011.
doi: 10.1016/j.cities.2018.11.011 |
[36] |
Zheng S, Wang J, Sun C, et al. Air pollution lowers Chinese urbanites′ expressed happiness on social media. Nature Human Behaviour, 2019, 3(3): 237-243. DOI: 10.1038/s41562-018-0521-2.
doi: 10.1038/s41562-018-0521-2 pmid: 30953012 |
[37] |
Sun C, Zheng S, Wang J, et al. Does clean air increase the demand for the consumer city? Evidence from Beijing. Journal of Regional Science, 2019, 59(3): 409-434. DOI: 10.1111/jors.12443.
doi: 10.1111/jors.2019.59.issue-3 |
[38] |
Yue Y, Zhuang Y, Yeh A G O, et al. Measurements of POI-based mixed use and their relationships with neighborhood vibrancy. International Journal of Geographical Information Science, 2016, 31(4): 658-675. DOI: 10.1080/13658816.2016.1220561.
doi: 10.1080/13658816.2016.1220561 |
[39] |
Wang B, Loo B P Y, Zhen F, et al. Urban resilience from the lens of social media data: Responses to urban flooding in Nanjing, China. Cities, 2020, 106: 102884. DOI: 10.1016/j.cities.2020.102884.
doi: 10.1016/j.cities.2020.102884 |
[40] |
金淑婷, 李博, 杨永春, 等. 中国城市分布特征及其影响因素. 地理研究, 2015, 34(7): 1352-1366.
doi: 10.11821/dlyj201507014 |
[ Jin Shuting, Li Bo, Yang Yongchun, et al. The distribution of cities in China and its influencing factors. Geographical Research, 2015, 34(7): 1352-1366.]. DOI: 10.11821/dlyj201507014. | |
[41] | 毛媛媛, 丁家骏. 抢劫与抢夺犯罪行为时空分布特征研究: 以上海市浦东新区为例. 人文地理, 2014, 29(1): 49-54. |
[ Mao Yuanyuan, Ding Jiajun. Study on spatial-temporal patterns of robbery and snatch: A case study of Pudong new area, Shanghai. Human Geography, 2014, 29(1): 49-54.]. DOI: 10.13959/j.issn.1003-2398.2014.01.011. | |
[42] |
Griliches Z, Hausman JA. Errors in variables in panel data. Journal of Econometrics. 1986, 31(1): 93-118. DOI: 10.1016/0304-4076(86)90058-8.
doi: 10.1016/0304-4076(86)90058-8 |
[43] | Anselin L. Spatial Econometrics: Methods and Models. Boston: Kluwer Academic Publisher, 2013: 86. |
[44] |
Yang L, Wang B, Zhou J, et al. Walking accessibility and property prices spatial econometrics. Transportation Research Part D: Transport and Environment, 2018, 62: 551-562. DOI: 10.1016/j.trd.2018.04.001.
doi: 10.1016/j.trd.2018.04.001 |
[1] | 许燕婷, 冯建喜, 陈曦. 交通性体力活动与空气污染暴露交互作用下的健康综合效应评价——以南京市为例[J]. 地理研究, 2021, 40(7): 1963-1977. |
[2] | 马凌, 陈浩然, 朱竑. 后城市景观中的乡愁与地方批判:基于“珠江夜游”艺术展的图像分析[J]. 地理研究, 2021, 40(6): 1637-1651. |
[3] | 周春山, 徐期莹, 曹永旺. 基于理性选择理论的广州不同类型社区老年人独立居住特征及影响因素[J]. 地理研究, 2021, 40(5): 1495-1514. |
[4] | 曹广忠, 刘嘉杰, 刘涛. 空气质量对中国人口迁移的影响[J]. 地理研究, 2021, 40(1): 199-212. |
[5] | 杨文越, 梁斐雯, 曹小曙. 多尺度建成环境对居民通勤出行碳排放的影响——来自广州的实证研究[J]. 地理研究, 2020, 39(7): 1625-1639. |
[6] | 张延吉, 邓伟涛, 赵立珍, 李苗裔. 城市建成环境如何影响居民生理健康?——中介机制与实证检验[J]. 地理研究, 2020, 39(4): 822-835. |
[7] | 姜玉培, 甄峰, 孙鸿鹄, 王文文. 健康视角下城市建成环境对老年人日常步行活动的影响研究[J]. 地理研究, 2020, 39(3): 570-584. |
[8] | 刘星南, 吴志峰, 骆仁波, 吴艳艳. 基于多源数据和深度学习的城市边缘区判定[J]. 地理研究, 2020, 39(2): 243-256. |
[9] | 马凌,张媛媛,朱竑,陈晓亮. 城市行政区划调整背景下城郊居民地方认同的重构与机制研究——以广州番禺小龙村为例[J]. 地理研究, 2019, 38(8): 2044-2057. |
[10] | 周素红, 彭伊侬, 柳林, 林荣平, 张春霞. 日常活动地建成环境对老年人主观幸福感的影响[J]. 地理研究, 2019, 38(7): 1625-1639. |
[11] | 荣培君, 张丽君, 秦耀辰, 李阳, 郑智成. 建成环境对城市居民日常出行碳排放的影响——以开封市248个居住区为例[J]. 地理研究, 2019, 38(6): 1464-1480. |
[12] | 张永明, 甄峰. 建成环境对居民购物模式选择的影响——以南京为例[J]. 地理研究, 2019, 38(2): 313-325. |
[13] | 高枫, 李少英, 吴志峰, 吕帝江, 黄冠平, 刘小平. 广州市主城区共享单车骑行目的地时空特征与影响因素[J]. 地理研究, 2019, 38(12): 2859-2872. |
[14] | 罗秋菊, 丁绍莲, 潘珂. 外来饮食文化影响下广州本地居民地方身份建构过程的代际差异[J]. 地理研究, 2018, 37(9): 1762-1774. |
[15] | 张国俊, 王珏晗, 庄大昌. 广州市产业生态化时空演变特征及驱动因素[J]. 地理研究, 2018, 37(6): 1070-1086. |
|