地理研究 ›› 2021, Vol. 40 ›› Issue (8): 2314-2330.doi: 10.11821/dlyj020200894
收稿日期:
2020-09-18
接受日期:
2020-11-20
出版日期:
2021-08-10
发布日期:
2021-10-10
通讯作者:
李双双(1988-),男,陕西潼关人,博士,讲师,硕士生导师,主要研究方向为全球变化与区域灾害防治。E-mail: lss40609010@126.com作者简介:
何锦屏(1998-),女,湖南平江人,硕士研究生,主要研究方向为全球变化与区域灾害防治。E-mail: JPH1116@126.com
基金资助:
HE Jinping(), LI Shuangshuang(
)
Received:
2020-09-18
Accepted:
2020-11-20
Published:
2021-08-10
Online:
2021-10-10
摘要:
基于1970—2017年秦岭南北72个站点气象数据,以“地理时空分析-小波相干分析-时空耦合网络”为方法框架,对秦岭南北干旱-热浪时空耦合特征进行分析;进而以干旱-热浪时空耦合网络为基础,完善时空网络连边规则,拓展单顶点网分析方法,再认识多灾种时空耦合的群聚群发效应。结果表明:① 全球变暖背景下,秦岭南北降水模态逐渐由20世纪80年代雨涝主导向干旱主导转变,同时热浪在2010年前后经历第2个谷值期后快速增加,加剧了区域干旱-热浪耦合风险。② 秦岭南北干旱-热浪变化具有同步性,但是不同时段显著周期存在差异。其中,在20世纪70—80年代初,秦岭南北干旱-热浪4~8 a周期同步减弱,并向低频2~4 a周期转变;后期同步耦合增强时段有2个,分别是1995—2002和2012—2017年。在空间格局上,秦岭以北和汉江谷地为秦岭南北干旱-热浪耦合影响关键区域,而丹江口水库附近、嘉陵江流域、秦岭南坡中段为干旱-热浪耦合波动区。③ 在研究方法上,地理时空分析为秦岭南北干旱-热浪时空耦合提供基本事实判断,小波相干可定量干旱-热浪多时间尺度耦合关系,多灾种时空耦合网络可解释多灾种“平静-爆发”现象,识别干旱-热浪耦合稳定区和波动区,三种方法相辅相成,初步形成面向多灾种时空耦合分析方法体系。
何锦屏, 李双双. 多灾种时空耦合网络构建:从多维网到单顶点网[J]. 地理研究, 2021, 40(8): 2314-2330.
HE Jinping, LI Shuangshuang. Spatiotemporal network modeling of multi-hazard: From bipartite to single point network[J]. GEOGRAPHICAL RESEARCH, 2021, 40(8): 2314-2330.
表1
1970—2017年秦岭南北旱涝月数年代变化特征
等级 | 1971—1980年 | 1981—1990年 | 1991—2000年 | 2001—2010年 | 2011—2017年 |
---|---|---|---|---|---|
极端干旱 | 0.7 | 0.2 | 3.9 | 1.2 | 2.3 |
严重干旱 | 3.8 | 1.3 | 11.2 | 7.4 | 6.5 |
中等干旱 | 10.7 | 4.8 | 17.0 | 16.6 | 9.2 |
轻微干旱 | 20.0 | 11.3 | 18.9 | 21.6 | 14.3 |
小计 | 35.2(29.3%) | 17.6(14.7%) | 51.0(42.5%) | 46.8(39.0%) | 32.3(38.5%) |
正常 | 47.0(39.2%) | 43.1(35.9%) | 40.1(33.4%) | 42.9(35.8%) | 29.6(35.2%) |
轻微湿润 | 18.7 | 21.3 | 15.6 | 15.2 | 10.6 |
中等湿润 | 12.2 | 18.0 | 9.4 | 8.3 | 5.8 |
严重湿润 | 5.3 | 14.5 | 3.4 | 5.3 | 4.9 |
极端湿润 | 1.6 | 5.5 | 0.5 | 1.5 | 0.8 |
小计 | 37.8(31.5%) | 59.3(49.4%) | 28.9(24.1%) | 30.3(25.2%) | 22.1(26.3%) |
[1] |
Cutter S L, Gall M. Sendai targets at risk. Nature Climate Change, 2015, 5(8):707-709. DOI: 10.1038/nclimate2718.
doi: 10.1038/nclimate2718 |
[2] |
Dottori F, Szewczyk W, Ciscar J C, et al. Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 2018, 8(9):781-786. DOI: 10.1038/s41558-018-0257-z.
doi: 10.1038/s41558-018-0257-z |
[3] |
Andrews T M, Delton A W, Kline R. High-risk high-reward investments to mitigate climate change. Nature Climate Change, 2018, 8(10):890-894. DOI: 10.1038/s41558-018-0266-y.
doi: 10.1038/s41558-018-0266-y |
[4] |
Mora C, Spirandelli D, Franklin E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change, 2018, 8(12):1062-1071. DOI: 10.1038/s41558-018-0315-6.
doi: 10.1038/s41558-018-0315-6 |
[5] |
Gill J C, Malamud B D. Reviewing and visualizing the interactions of natural hazards. Reviews of Geophysics, 2014, 52(4):680-722. DOI: 10.1002/2013RG000445.
doi: 10.1002/2013RG000445 |
[6] |
Gallina V, Torresan S, Critto A, et al. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of Environmental Management, 2016, 168:123-132. DOI: 10.1016/j.jenvman.2015.11.011.
doi: 10.1016/j.jenvman.2015.11.011 |
[7] |
Steptoe H, Jones S E O, Fox H. Correlations between extreme atmospheric hazards and global teleconnections: Implications for multihazard resilience. Reviews of Geophysics, 2018, 56(1):50-78. DOI: 10.1002/2017RG000567.
doi: 10.1002/2017RG000567 |
[8] |
Tilloy A, Malamud B D, Winter H, et al. A review of quantification methodologies for multi-hazard interrelationships. Earth-Science Reviews, 2019, 196:102881. DOI: 10.1016/j.earscirev.2019.102881.
doi: 10.1016/j.earscirev.2019.102881 |
[9] |
Moftakhari H, Schubert J E, AghaKouchak A, et al. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 2019, 128:28-38. DOI: 10.1016/j.advwatres.2019.04.009.
doi: 10.1016/j.advwatres.2019.04.009 |
[10] |
Hillier J K, Matthews T, Wilby R L, et al. Multi-hazard dependencies can increase or decrease risk. Nature Climate Change, 2020, 10(7):595-598. DOI: 10.1016/j.advwatres.2019.04.009.
doi: 10.1016/j.advwatres.2019.04.009 |
[11] |
Valle-Levinson A, Olabarrieta M, Heilman L. Compound flooding in Houston-Galveston Bay during Hurricane Harvey. Science of the Total Environment, 2020, 747:141272. DOI: 10.1016/j.scitotenv.2020.141272.
doi: 10.1016/j.scitotenv.2020.141272 |
[12] |
Wang J, Gu X, Huang T. Using Bayesian networks in analyzing powerful earthquake disaster chains. Natural Hazards, 2013, 68(2):509-527. DOI: 10.1007/s11069-013-0631-0.
doi: 10.1007/s11069-013-0631-0 |
[13] |
Hao Z, Hao F, Singh V P, et al. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. Journal of Geophysical Research: Atmospheres, 2017, 122(17):9050-9059. DOI: 10.1002/2017JD027030.
doi: 10.1002/2017JD027030 |
[14] |
Ye Y, Fang W. Estimation of the compound hazard severity of tropical cyclones over coastal China during 1949-2011 with copula function. Natural Hazards, 2018, 93(2):887-903. DOI: 10.1007/s11069-018-3329-5.
doi: 10.1007/s11069-018-3329-5 |
[15] |
Wang R, Zhang J, Guo E, et al. Integrated drought risk assessment of multi-hazard-affected bodies based on copulas in the Taoerhe Basin, China. Theoretical and Applied Climatology, 2019, 135(1):577-592. DOI: 10.1007/s00704-018-2374-z.
doi: 10.1007/s00704-018-2374-z |
[16] |
Svensson C, Jones D A. Dependence between sea surge, river flow and precipitation in south and west Britain. Hydrology and Earth System Sciences, 2004, 8(5):973-992. DOI: 10.5194/hess-8-973-2004.
doi: 10.5194/hess-8-973-2004 |
[17] |
Van den Hurk B, Van Meijgaard E, De Valk P, et al. Analysis of a compounding surge and precipitation event in the Netherlands. Environmental Research Letters, 2015, 10(3):035001. DOI: 10.1088/1748-9326/10/3/035001.
doi: 10.1088/1748-9326/10/3/035001 |
[18] |
王然, 连芳, 余瀚, 等. 基于孕灾环境的全球台风灾害链分类与区域特征分析. 地理研究, 2016, 35(5):836-850.
doi: 10.11821/dlyj201605003 |
[ Wang Ran, Lian Fang, Yu Han, et al. Classification and regional features analysis of global typhoon disaster chains based on hazard-formative environment. Geographical Research, 2016, 35(5):836-850.] DOI: 10.11821/dlyj201605003.
doi: 10.11821/dlyj201605003 |
|
[19] |
李双双, 杨赛霓, 刘宪锋, 等. 2008年中国南方低温雨雪冰冻灾害网络建模及演化机制研究. 地理研究, 2015, 34(10):1887-1896.
doi: 10.11821/dlyj201510007 |
[ Li Shuangshuang, Yang Saini, Liu Xianfeng, et al. Network modeling and dynamic mechanism of the severe cold surge, ice-snow events, and frozen disasters in southern China in 2008. Geographical Research, 2015, 34(10):1887-1896.] DOI: 10.11821/dlyj201510007.
doi: 10.11821/dlyj201510007 |
|
[20] |
李双双, 杨赛霓, 刘焱序, 等. 1960—2013年京津冀地区干旱-暴雨-热浪灾害时空聚类特征. 地理科学, 2016, 36(1):149-156.
doi: 10.13249/j.cnki.sgs.2016.01.019 |
[ Li Shuangshuang, Yang Saini, Liu Yanxu, et al. Spatio-temporal clustering characteristics of drought, heavy rain and hot waves in the Beijing-Tianjin-Hebei region during 1960-2013. Scientia Geographica Sinica, 2016, 36(1):149-156.] DOI: 10.13249/j.cnki.sgs.2016.01.019.
doi: 10.13249/j.cnki.sgs.2016.01.019 |
|
[21] |
李双双, 杨赛霓, 刘宪锋. 面向非过程的多灾种时空网络建模: 以京津冀地区干旱热浪耦合为例. 地理研究, 2017, 36(8):1415-1427.
doi: 10.11821/dlyj201708002 |
[ Li Shuangshuang, Yang Saini, Liu Xianfeng. Spatiotemporal networking modeling in concurrent heat waves and droughts in the Beijing-Tianjin-Hebei metropolitan region, China. Geographical Research, 2017, 36(8):1415-1427.] DOI: 10.11821/dlyj201708002.
doi: 10.11821/dlyj201708002 |
|
[22] |
Borgatti S P, Everett M G. Network analysis of 2-mode data. Social Networks, 1997, 19(3):243-269. DOI: 10.1016/s0378-8733(96)00301-2.
doi: 10.1016/s0378-8733(96)00301-2 |
[23] | 李乐, 樊瑛. 基于二分结构的有向网络分析. 北京师范大学学报: 自然科学版, 2015, 51(5):480-483. |
[ Li Le, Fan Ying. Directed network analysis based on bipartite structure. Journal of Beijing Normal University: Natural Science, 2015, 51(5):480-483.] DOI: 10.16360/j.cnki.jbnuns.2015.05.009.
doi: 10.16360/j.cnki.jbnuns.2015.05.009 |
|
[24] |
Burchard J, Cornwell B. Structural holes and bridging in two-mode networks. Social Networks, 2018, 55(10):11-20. DOI: 10.1016/j.socnet.2018.04.001.
doi: 10.1016/j.socnet.2018.04.001 |
[25] |
邓晨晖, 白红英, 高山, 等. 1964—2015年气候因子对秦岭地区植物物候的综合影响效应. 地理学报, 2018, 73(5):917-931.
doi: 10.11821/dlxb201805011 |
[ Deng Chenhui, Bai Hongying, Gao Shan, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964-2015. Acta Geographica Sinica, 2018, 73(5):917-931.] DOI: 10.11821/dlxb201805011.
doi: 10.11821/dlxb201805011 |
|
[26] |
李双双, 芦佳玉, 延军平, 等. 1970—2015年秦岭南北气温时空变化及其气候分界意义. 地理学报, 2018, 73(1):13-24.
doi: 10.11821/dlxb201801002 |
[ Li Shuangshuang, Lu Jiayu, Yan Junping, et al. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary. Acta Geographica Sinica, 2018, 73(1):13-24.] DOI: 10.11821/dlxb201801002.
doi: 10.11821/dlxb201801002 |
|
[27] |
翟丹萍, 白红英, 秦进, 等. 秦岭太白山气温直减率时空差异性研究. 地理学报, 2016, 71(9):1587-1595.
doi: 10.11821/dlxb201609010 |
[ Zhai Danping, Bai Hongying, Qin Jin, et al. Temporal and spatial variability of air temperature lapse rates in Mt. Taibai, Central Qinling Mountions. Acta Geographica Sinica, 2016, 71(9):1587-1595.] DOI: 10.11821/dlxb201609010.
doi: 10.11821/dlxb201609010 |
|
[28] | 吴绍洪, 刘文政, 潘韬, 等. 1960—2011年中国陆地表层区域变动幅度与速率. 科学通报, 2016, 61(19):2187-2197. |
[ Wu Shaohong, Liu Wenzheng, Pan Tao, et al. Amplitude and velocity of the shifts in the Chinese terrestrial surface regions from 1960 to 2011. Chinese Science Bulletin, 2016, 61(19):2187-2197.] DOI: 10.1360/N972016-00051.
doi: 10.1360/N972016-00051 |
|
[29] | 高涛涛, 殷淑燕, 王水霞. 基于SPEI指数的秦岭南北地区干旱时空变化特征. 干旱区地理, 2018, 41(4):761-770. |
[ Gao Taotao, Yin Shuyan, Wang Shuixia. Spatial and temporal variations of drought in northern and southern regions of Qinling Mountaion based on standardized precipitation evapotranspiration index. Arid Land Geography, 2018, 41(4):761-770.] DOI: 10.13826/j.cnki.cn65-1103/x.2018.04.011.
doi: 10.13826/j.cnki.cn65-1103/x.2018.04.011 |
|
[30] |
李双双, 延军平, 孔锋, 等. 极点对称模态分解下西安高温天气的趋势特征. 地理研究, 2018, 37(1):209-219.
doi: 10.11821/dlyj201801016 |
[ Li Shuangshuang, Yan Junping, Kong Feng, et al. The nonlinear trends of high temperature weather in Xi'an by extreme-point symmetric mode decomposition method. Geographical Research, 2018, 37(1):209-219.] DOI: 10.11821/dlyj201801016.
doi: 10.11821/dlyj201801016 |
|
[31] |
李双双, 延军平, 杨赛霓, 等. 1960—2016年秦岭-淮河地区热浪时空变化特征及其影响因素. 地理科学进展, 2018, 37(4):504-514.
doi: 10.18306/dlkxjz.2018.04.006 |
[ Li Shuangshuang, Yan Junping, Yang Saini, et al. Spatiotemporal variability of heat waves and influencing factors in the Qinling-Huaihe region, 1960-2016. Progress in Geography, 2018, 37(4):504-514.] DOI: 10.18306/dlkxjz.2018.04.006.
doi: 10.18306/dlkxjz.2018.04.006 |
|
[32] |
Kang S Eltahir E A B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nature Communications, 2018, 9(1):1-9. DOI: 10.1038/s41467-018-05252-y.
doi: 10.1038/s41467-018-05252-y |
[33] |
AghaKouchak A, Huning L S, Chiang F, et al. How do natural hazards cascade to cause disasters?. Nature, 2018, 561:458-460. DOI: 10.1038/d41586-018-06783-6.
doi: 10.1038/d41586-018-06783-6 |
[34] |
Chiang F, Mazdiyasni O, AghaKouchak A. Amplified warming of droughts in southern United States in observations and model simulations. Science Advances, 2018, 4(8):2380-2386. DOI: 10.1126/sciadv.aat2380.
doi: 10.1126/sciadv.aat2380 |
[35] | 黄晓军, 王晨, 胡凯丽. 快速空间扩张下西安市边缘区社会脆弱性多尺度评估. 地理学报, 2018, 37(6):1002-1017. |
[ Huang Xiaojun, Wang Chen, Hu Kaili. Multi-scale assessment of social vulnerability to rapid urban expansion in urban fringe: A case study of Xi'an. Acta Geographica Sinica, 2018, 37(6):1002-1017.] DOI: 10.11821/dlxb201806002.
doi: 10.11821/dlxb201806002 |
|
[36] |
马蓓蓓, 李海玲, 魏也华, 等. 西安市贫困空间结构特征与发生机理. 地理学报, 2018, 73(6):1018-1032.
doi: 10.11821/dlxb201806003 |
[ Ma Beibei, Li Haibing, Ye Hua Dennis Wei, et al. Spatial structure and mechanism of urban poverty in Xi'an city. Acta Geographica Sinica, 2018, 73(6):1018-1032.] DOI: 10.11821/dlxb201806003.
doi: 10.11821/dlxb201806003 |
|
[37] |
王录仓, 武荣伟, 李巍. 中国城市群人口老龄化时空格局. 地理学报, 2017, 72(6):1001-1016.
doi: 10.11821/dlxb201706005 |
[ Wang Lucang, Wu Rongwei, Li Wei. Spatial-temporal patterns of population aging on China's urban agglomerations. Acta Geographica Sinica, 2017, 72(6):1001-1016.] DOI: 10.11821/dlxb201706005.
doi: 10.11821/dlxb201706005 |
|
[38] |
Qi W H, Li H R, Zhang Q F, et al. Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China's Han River basin. Ecological Engineering, 2019, 126:64-73. DOI: 10.1016/j.ecoleng.2018.11.001.
doi: 10.1016/j.ecoleng.2018.11.001 |
[39] |
Liu X F, Zhu X F, Pan Y Z, et al. Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences, 2016, 26(6):750-767. DOI: 10.1007/s11442-016-1297-9.
doi: 10.1007/s11442-016-1297-9 |
[40] |
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 2010, 23(7):1696-1718. DOI: 10.1175/2009JCLI2909.1.
doi: 10.1175/2009JCLI2909.1 |
[41] | 黄卓, 陈辉, 田华. 高温热浪指标研究. 气象, 2011, 37(3):345-351. |
[ Huang Z, Chen H, Tian H. Research on the heat wave index. Meteorological Monthly, 2011, 37(3):345-351.] DOI: 10.7519/j.issn.1000-0526.2011.3.013.
doi: 10.7519/j.issn.1000-0526.2011.3.013 |
|
[42] |
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439):509-512. DOI: 10.1126/science.286.5439.509.
doi: 10.1126/science.286.5439.509 |
[43] | 刘军. 整体网络分析: UCINET软件实用指南(第二版). 上海: 格致出版社, 2014. |
[ Liu Jun. Lectures on Whole Network Approach: A Practical Guide to UCINET. 2nd ed. Shanghai: Truth and Wisdom Press, 2014.] | |
[44] | Wasserman S, Faust K. Social network analysis: Methods and applications. Cambridge University Press, 1994. |
[45] | 刘云刚, 许学强. 中国地理学的二元结构. 地理科学, 2008, 28(5):587-593. |
[ Liu Yungang, Xu Xueqiang. Duality of chinese geography. Scientia Geographica Sinica, 2008, 28(5):587-593.] DOI: 10.3969/j.issn.1000-0690.2008.05.001.
doi: 10.3969/j.issn.1000-0690.2008.05.001 |
|
[46] | Barabási A L. Bursts: The Hidden Patterns behind Everything We Do, from Your E-mail to Bloody Crusades. New York: Penguin Books, 2010. |
[1] | 罗桑扎西, 甄峰, 张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架[J]. 地理研究, 2021, 40(4): 1195-1208. |
[2] | 焦美琪, 杜德斌, 桂钦昌, 侯纯光. “一带一路”视角下城市技术合作网络演化特征与影响因素研究[J]. 地理研究, 2021, 40(4): 913-927. |
[3] | 张红旗, 李达净. 西北干旱区不稳定耕地概念与分类研究——以新疆昌吉州为例[J]. 地理研究, 2021, 40(3): 597-612. |
[4] | 许尔琪, 李婧昕. 干旱区水资源约束下的生态退耕空间优化及权衡分析——以奇台县为例[J]. 地理研究, 2021, 40(3): 627-642. |
[5] | 计启迪, 陈伟, 刘卫东. 全球跨境并购网络结构及其演变特征[J]. 地理研究, 2020, 39(3): 527-538. |
[6] | 段德忠,杜德斌,谌颖. 知识产权贸易下的全球地缘科技格局及其演化[J]. 地理研究, 2019, 38(9): 2115-2128. |
[7] | 陈闪闪,彭澎,陆锋,吴升. 海洋主航道对全球集装箱运输网络的影响分析[J]. 地理研究, 2019, 38(9): 2273-2287. |
[8] | 侯纯光,杜德斌,刘承良,翟晨阳. 全球人才流动网络复杂性的时空演化——基于全球高校留学生流动数据[J]. 地理研究, 2019, 38(8): 1862-1876. |
[9] | 孙艺杰, 刘宪锋, 任志远, 李双双. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019, 38(7): 1820-1832. |
[10] | 郭建科, 何瑶, 王绍博, 吴陆陆. 1985年以来中国大陆沿海集装箱港口体系位序-规模分布及其网络联系[J]. 地理研究, 2019, 38(4): 869-883. |
[11] | 李双双, 杨赛霓, 刘宪锋. 面向非过程的多灾种时空网络建模——以京津冀地区干旱热浪耦合为例[J]. 地理研究, 2017, 36(8): 1415-1427. |
[12] | 安雪丽, 武建军, 周洪奎, 李小涵, 刘雷震, 杨建华. 土壤相对湿度在东北地区农业干旱监测中的适用性分析[J]. 地理研究, 2017, 36(5): 837-849. |
[13] | 李彩瑛, 阎建忠, 刘林山, 李兰晖, 张镱锂. 基于TVDI的羌塘高原夏季土壤湿度变化分析[J]. 地理研究, 2017, 36(11): 2101-2111. |
[14] | 师满江, 颉耀文, 曹琦. 干旱区绿洲农村居民点景观格局演变及机制分析[J]. 地理研究, 2016, 35(4): 692-702. |
[15] | 阿布都米吉提⋅阿布力克木, 阿里木江⋅卡斯木, 艾里西尔:库尔班, 曼孜然:吐尔逊. 基于多源空间数据的塔里木河下游湖泊变化研究[J]. 地理研究, 2016, 35(11): 2071-2090. |
|