城市群范围界定方法研究——以长江三角洲城市群为例
作者简介:孙伟(1980- ),男,辽宁彰武人,博士,副研究员,研究方向为区域发展与规划。E-mail: wsun@niglas.ac.cn
收稿日期: 2018-04-18
网络出版日期: 2018-10-20
基金资助
国家自然科学基金项目(41871119)
On the urban agglomeration scope definition method: A case study of the Yangtze River Delta
Received date: 2018-04-18
Online published: 2018-10-20
Copyright
孙伟 , 闫东升 , 吴加伟 . 城市群范围界定方法研究——以长江三角洲城市群为例[J]. 地理研究, 2018 , 37(10) : 1957 -1970 . DOI: 10.11821/dlyj201810007
Since China's reform and opening-up, with the increasingly rapid industrialization and urbanization process, urban agglomeration has become the main spatial component of the new-type urbanization. Urban agglomeration has also tended to be the most important agent of China to compete globally. Recently, China's central and local governments have paid special attention to the development of urban agglomeration through a series of regional plans and policies. For example, the "National New-type Urbanization Planning" has indicated that urban agglomeration should be the main form of new-type urbanization in transitional China. Many regional plans have been issued to promote the development of urban agglomeration, so as to reshape China's economic geography and regional strategies. Therefore, the definition and related research of the scope of urban agglomeration have been the subject of heated debates. Although the definition of the scope of urban agglomeration has been an important topic of scholarly attention, there are no generally accepted, efficient, and credible methodological system, as well as a set of techniques to identify urban agglomeration in the related literature. Based on the existing studies and geographical perspective, this paper highlights the advantages of the comprehensive analysis on natural-human factors. With regard to the methodologies, we aim to improve quantitative methods such as traditional gravitational models, traffic accessibility and financial connection networks, and we also combine some qualitative methods such as function oriented zoning, language-cultural geography and national strategy. In summary, this paper proposes an integrated method for defining the spatial scope of urban agglomeration. Taking the Yangtze River Delta, which includes Shanghai, Jiangsu, Zhejiang and Anhui, as an example, this paper conducts the qualitative analysis by using the methods such as function oriented zoning, language-cultural geographic relationship, and the requirements of national regional strategies. Furthermore, we also conduct the quantitative analysis by applying the methods such as economic gravity, traffic accessibility, and financial connection network. Then, we define the scope of the Yangtze River Delta urban agglomeration as a set of 26 cities, led by Shanghai, Nanjing, Hangzhou and Hefei. This paper will improve the effectiveness and precision for the scope definition of urban agglomeration by the combination of qualitative and quantitative analyses. And, this study will contribute to the innovations of related methodologies, which are useful for the planning of urban agglomeration especially the scientific definition of the scope of urban agglomeration scope.
Fig. 1 The principle function regionalization planning in the Yangtze River Delta图1 长江三角洲的主体功能区划分 |
Fig. 2 Dialect distribution of the Yangtze River Delta图2 长江三角洲方言分布 |
Fig. 3 Attraction strength of cities with Shanghai, Nanjing, Hangzhou and Hefei in the Yangtze River Delta图3 长江三角洲各城市与上海、南京、杭州、合肥引力强度 |
Tab. 1 The time to Shanghai by the shortest road, passenger rail transit time and shipping conditions表1 各城市到上海的最短公路、客运铁路通行时间 |
城市 | 最短公路里程(km) | 最短公路通行时间(h) | 最短客运铁路通行时间(h) |
---|---|---|---|
南京市 | 298.0 | 3.0 | 1.3 |
无锡市 | 135.0 | 1.4 | 0.5 |
徐州市 | 582.0 | 5.8 | 3.0 |
常州市 | 177.0 | 1.8 | 0.7 |
苏州市 | 108.0 | 1.1 | 0.4 |
南通市 | 128.0 | 1.3 | 0.6 |
连云港市 | 480.0 | 4.8 | 3.0 |
淮安市 | 405.0 | 4.1 | 2.5 |
盐城市 | 306.0 | 3.1 | 2.0 |
扬州市 | 282.0 | 2.8 | 2.0 |
镇江市 | 248.0 | 2.5 | 1.0 |
泰州市 | 233.0 | 2.3 | 2.5 |
宿迁市 | 493.0 | 4.9 | 3.0 |
杭州市 | 176.0 | 1.8 | 1.0 |
宁波市 | 214.0 | 2.1 | 2.0 |
温州市 | 460.0 | 4.6 | 4.0 |
嘉兴市 | 108.0 | 1.1 | 0.5 |
湖州市 | 149.0 | 1.5 | 2.0 |
绍兴市 | 199.0 | 2.0 | 1.4 |
金华市 | 328.0 | 3.3 | 2.0 |
衢州市 | 406.0 | 4.1 | 2.3 |
舟山市 | 287.0 | 2.9 | 2.5 |
台州市 | 370.0 | 3.7 | 3.2 |
丽水市 | 420.0 | 4.2 | 7.0 |
合肥市 | 465.0 | 4.7 | 3.0 |
淮北市 | 610.0 | 6.1 | 7.6 |
亳州市 | 697.0 | 7.0 | 7.5 |
宿州市 | 569.0 | 5.7 | 2.5 |
蚌埠市 | 486.0 | 4.9 | 2.3 |
阜阳市 | 653.0 | 6.5 | 6.5 |
淮南市 | 523.0 | 5.2 | 4.0 |
滁州市 | 365.0 | 3.7 | 1.6 |
六安市 | 549.0 | 5.5 | 3.2 |
马鞍山市 | 327.0 | 3.3 | 1.8 |
芜湖市 | 353.0 | 3.5 | 2.0 |
宣城市 | 283.0 | 2.8 | 4.3 |
铜陵市 | 431.0 | 4.3 | 2.2 |
池州市 | 478.0 | 4.8 | 2.8 |
安庆市 | 530.0 | 5.3 | 3.0 |
黄山市 | 397.0 | 4.0 | 7.0 |
Tab. 2 The centrality of financial flow network by some cities in the Yangtze River Delta表2 部分城市金融网络中心度表 |
排名 | 全国性股份制银行 | 城市商业银行 | |||||||
---|---|---|---|---|---|---|---|---|---|
点出中心度 | 点入中心度 | 点出中心度 | 点入中心度 | ||||||
1 | 上海市 | 189 | 杭州市 | 46 | 南京市 | 151 | 杭州市 | 70 | |
2 | 杭州市 | 104 | 宁波市 | 43 | 台州市 | 114 | 上海市 | 55 | |
3 | 南京市 | 76 | 南京市 | 42 | 宁波市 | 44 | 宁波市 | 44 | |
4 | 合肥市 | 17 | 苏州市 | 35 | 金华市 | 35 | 苏州市 | 35 | |
5 | 宁波市 | 8 | 温州市 | 33 | 杭州市 | 34 | 南京市 | 31 | |
6 | 温州市 | 4 | 无锡市 | 27 | 上海市 | 31 | 温州市 | 24 | |
7 | 芜湖市 | 2 | 金华市 | 18 | 温州市 | 19 | 无锡市 | 22 | |
8 | - | - | 合肥市 | 18 | 合肥市 | 8 | 舟山市 | 16 |
Tab. 3 The order of financial contact value with Shanghai, Nanjing, Hangzhou and Hefei by national joint-stock banks表3 与上海、南京、杭州、合肥金融联系值排序: 全国性股份制银行 |
排名 | 与上海金融联系值 | 与南京金融联系值 | 与杭州金融联系值 | 与合肥金融联系值 | ||||
---|---|---|---|---|---|---|---|---|
1 | 杭州市 | 55 | 无锡市 | 27 | 金华市 | 18 | 芜湖市 | 4 |
2 | 南京市 | 38 | 南通市 | 16 | 温州市 | 17 | 安庆市 | 4 |
3 | 宁波市 | 34 | 常州市 | 7 | 绍兴市 | 14 | 铜陵市 | 2 |
4 | 苏州市 | 28 | 苏州市 | 6 | 嘉兴市 | 13 | 淮南市 | 2 |
5 | 合肥市 | 18 | 泰州市 | 5 | 宁波市 | 9 | 蚌埠市 | 2 |
6 | 温州市 | 16 | 徐州市 | 5 | 台州市 | 9 | 滁州市 | 1 |
7 | 芜湖市 | 9 | 镇江市 | 3 | 南京市 | 4 | - | - |
8 | - | - | 扬州市 | 2 | 湖州市 | 4 | - | - |
9 | - | - | 盐城市 | 2 | 衢州市 | 3 | - | - |
10 | - | - | 淮安市 | 1 | 舟山市 | 2 | - | - |
11 | - | - | 连云港 | 1 | 苏州市 | 1 | - | - |
12 | - | - | 宿迁市 | 1 | 丽水市 | 1 | - | - |
Tab. 4 The order of financial contact value with Shanghai, Nanjing, Hangzhou and Hefei by city commercial bank表4 与上海、南京、杭州、合肥金融联系值排序: 城市商业银行 |
排名 | 与上海金融联系值 | 与南京金融联系值 | 与杭州金融联系值 | 与合肥金融联系值 | ||||
---|---|---|---|---|---|---|---|---|
1 | 宁波市 | 20 | 上海市 | 30 | 宁波市 | 16 | 南京市 | 8 |
2 | 杭州市 | 17 | 苏州市 | 19 | 舟山市 | 4 | - | - |
3 | 苏州市 | 5 | 无锡市 | 18 | 绍兴市 | 3 | - | - |
4 | 无锡市 | 1 | 南通市 | 15 | 合肥市 | 3 | - | - |
5 | - | - | 泰州市 | 14 | 温州市 | 2 | - | - |
6 | - | - | 盐城市 | 13 | 金华市 | 1 | - | - |
7 | - | - | 杭州市 | 11 | 衢州市 | 1 | - | - |
8 | - | - | 宿迁市 | 9 | - | - | - | - |
9 | - | - | 镇江市 | 7 | - | - | - | - |
10 | - | - | 徐州市 | 7 | - | - | - | - |
11 | - | - | 常州市 | 6 | - | - | - | - |
12 | - | - | 扬州市 | 6 | - | - | - | - |
13 | - | - | 淮安市 | 4 | - | - | - | - |
14 | - | - | 连云港 | 4 | - | - | - | - |
Tab. 5 Comparison of different options for urban agglomeration in the Yangtze River Delta表5 长江三角洲城市群范围界定不同备选方案对比 |
方法 | 新增城市 | 城市总个数 | |
---|---|---|---|
定性 方法 | 主体功能区 | 连云港、徐州、温州、盐城、金华、合肥、芜湖、马鞍山、铜陵、安庆、池州、滁州、宣城 | 29 |
语言—文化地理 | 淮安、盐城、金华、合肥、芜湖、马鞍山、铜陵、池州、安庆、宣城 | 26 | |
国家战略 | 淮安、金华、合肥、芜湖、马鞍山、铜陵、池州、安庆、宣城、滁州、蚌埠、淮南 | 28 | |
定量 方法 | 经济引力 | 盐城、淮安、合肥、马鞍山、滁州、芜湖、宣城、铜陵、淮南、蚌埠、六安、金华 | 28 |
交通可达性 | 盐城、淮安、合肥、宣城、蚌埠、滁州、马鞍山、芜湖、铜陵、池州、安庆、金华、衢州 | 29 | |
金融联系网络 | 徐州、宿迁、淮安、盐城、连云港、金华、衢州、丽水、温州、合肥、芜湖、淮南、滁州、安庆、蚌埠、铜陵 | 32 |
Fig. 4 Urban agglomeration of the Yangtze River Delta图4 长江三角洲城市群范围 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
|
[4] |
[
|
[5] |
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
|
[20] |
|
[21] |
[
|
[22] |
|
[23] |
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
[27] |
[
|
[28] |
[
|
[29] |
[
|
[30] |
[
|
[31] |
|
[32] |
|
[33] |
[
|
/
〈 |
|
〉 |