基于犯罪模式理论的犯罪出行空间特征与影响因素——以长春市南关区扒窃为例
赵梓渝(1986-),男,吉林长春人,博士,讲师,硕士生导师,研究方向为城市网络与人口流动。E-mail: 171462539@qq.com |
收稿日期: 2019-11-25
录用日期: 2020-10-25
网络出版日期: 2021-05-10
基金资助
国家自然科学基金(41630749)
国家自然科学基金(41771161)
国家自然科学基金(42001176)
教育部人文社会科学研究青年基金(20YJCZH241)
版权
Spatial characteristics and influencing factors analysis of journey-to-crime based on crime pattern theory: A study of theft crime in Nanguan District, Changchun
Received date: 2019-11-25
Accepted date: 2020-10-25
Online published: 2021-05-10
Copyright
犯罪出行是犯罪地理学的重要研究议题,在犯罪防控、侦破等警务实践中具有突出的技术贡献。受制于研究数据的限制,中国犯罪出行实证研究较为缺乏。论文研究了2010—2016年长春市南关区扒窃犯罪出行的空间模式与影响因素,并指出:① 2010—2016年长春市南关区扒窃犯罪出行平均距离为5.74 km,存在明显的空间衰减效应,空间模式为就近掠夺,在距离犯罪者居住地2 km处出现犯罪缓冲区。② 南关区扒窃犯罪高发区与犯罪群体主要聚居地在空间上呈现重叠,该区域犯罪以就近掠夺的空间模式为主。③ 回归模型验证了犯罪者人口属性中性别、户籍地、是否就业和具有前科劣迹、涉案金额、犯罪地点所属类型对于出行距离的显著影响,其中户籍地变量为理解转型期中国大城市犯罪行为具有一定意义。
赵梓渝 , 刘大千 , 肖建红 , 王士君 . 基于犯罪模式理论的犯罪出行空间特征与影响因素——以长春市南关区扒窃为例[J]. 地理研究, 2021 , 40(3) : 885 -899 . DOI: 10.11821/dlyj020191027
Journey-to-crime is a behavioral process of criminals searching for the targets and places that meet the needs of crime. It measures the spatial distance of the criminal from the initial location to the predetermined location. This is an important technical contribution of criminal geography in crime prevention, case detection and other police practices. Restricted by the limited research data, empirical research on journey-to-crime in China is relatively lacking. This paper studies the spatial pattern and influencing factors of journey-to-crime in pickpocketing in Nanguan District of Changchun from 2010 to 2016. The paper points out that: 1) The average distance of journey-to-crime in the study area from 2010 to 2016 is 5.74 kilometers, which shows an obvious spatial attenuation effect. The spatial pattern is plunder nearby, and there is a crime buffer zone, 2 kilometers away from the criminal′s residence; 2) There is an overlap in space of the areas with high incidence of pickpocketing crime and the residence of crime groups. And the spatial pattern of crime in this area is mainly plunder nearby; 3) By constructing a sequencing logit model, the influence of the uncertainty of measuring journey-to-crime distance on analysis results can be weakened. The regression model verifies the significant impact of gender, domicile, employment and criminal record, amount of money involved and type of crime location on journey-to-crime distance. Among them, the positive correlation between the amount of money involved and the travel distance verifies the prediction of the rational choice theory on criminal motivation. Based on the case study of pickpocketing crime in China′s big cities, this paper indicates that the average journey-to-crime distance, spatial pattern and influencing factors of pickpocketing crime in China and western cities are similar or consistent, which further promotes the combination of criminal geography on criminal behavior research between China and Western countries. Through analyzing the influence of the residence of crime groups on their journey pattern, the urban crime phenomenon and the social management problems of floating population in China under the background of high-speed urbanization can be hopefully reflected upon, thereby expanding the current literature on journey-to-crime. This paper is of a practical significance to criminal profiling, crime risk assessing in residential space, guiding crime prevention and assisting case detection.
Key words: criminal geography; criminal behavior; journey-to-crime; journey pattern; Changchun
表1 解释变量定义及描述性统计Tab. 1 Explanatory variable definition and descriptive statistics |
变量名称 | 定义 | 均值 (频次) | 标准差 (比例%) | ||
---|---|---|---|---|---|
出行距离 | 距离 | 1=就近掠夺 2=缓冲区犯罪 3=外出犯罪 | 1.98 | 0.80 | |
犯罪者人口 学特征 | 性别 | 1=男 0=女 | 0.87 | 0.33 | |
年龄 | 连续变量(岁) | 31.57 | 11.59 | ||
从业 | 1=从业 0=无业 | 0.25 | 0.43 | ||
前科劣迹 | 1=有前科 0=无前科 | 0.35 | 0.48 | ||
学历 | 1=文盲 2=小学 3=初中 4=中专、高中5=大专、大学 | 2.87 | 0.88 | ||
户籍地 | 1=长春市中心城区 2=吉林省非长春市中心城区 3=外省 | 2.03 | 0.73 | ||
犯罪金额 | 金额数额 | 连续变量(元) | 0.86 | 2.64 | |
犯罪空间 载体 | 热力 | 热力 | 连续变量 | 72.38 | 14.21 |
地点 | 公共服务设施 | 参照组 | (179) | (58.31) | |
室外空间 | 1=室外空间 0=其他 | (76) | (24.76) | ||
住宅小区 | 1=住宅小区 0=其他 | (52) | (16.94) | ||
犯罪时间 载体 | 季节 | 春季 | 参照组 | (75) | (24.43) |
夏季 | 1=夏 0=其他 | (95) | (30.94) | ||
秋季 | 1=秋 0=其他 | (54) | (17.59) | ||
冬季 | 1=冬 0=其他 | (83) | (27.04) | ||
工作日 | 工作日 | 1=工作日 0=非工作日 | 0.74 | 0.44 | |
24小时 时间段 | 0—8时 | 参照组 | (89) | (28.99) | |
8—16时 | 1=8—16点 0=其他 | (95) | (30.94) | ||
16—24时 | 1=16—24点 0=其他 | (123) | (40.07) |
注:表中的下划线数据为下划线变量指标的统计数据。 |
表2 假设检验与相关性分析Tab. 2 Hypothesis test and correlation analysis |
变量 | 变量 | ||
---|---|---|---|
性别 | t值=-1.172 | 犯罪金额 | Pearson=0.145** |
年龄 | Pearson=-0.016 | 热力 | Pearson=-0.116** |
从业 | t值=-2.812*** | 犯罪地点 | F值=3.390** |
前科劣迹 | t值=-0.431 | 犯罪季节 | F值=0.470 |
学历 | Spearman=-0.108* | 工作日 | t值=-0.509 |
户籍地 | Spearman=-0.088 | 24小时时间段 | F值=1.600 |
注:*、**和***分别表示在10%、5%和1%水平上显著。 |
表3 回归结果与稳定性检验Tab. 3 Regression results and stability test |
ordered logit model | OLS | ||||
---|---|---|---|---|---|
系数 | 标准误 | 系数 | 标准误 | ||
年龄 | -0.019* | (0.012) | -0.025 | (0.027) | |
学历 | -0.193 | (0.141) | -0.588* | (0.315) | |
户籍地 | -0.341** | (0.162) | -0.700* | (0.373) | |
前科劣迹 | 0.451* | (0.273) | 0.403 | (0.630) | |
从业 | -0.697** | (0.281) | -1.260** | (0.637) | |
犯罪金额 | 0.092** | (0.054) | 0.241** | (0.102) | |
热力 | -0.040** | (0.09) | -0.220** | (0.20) | |
室外空间 | 0.349 | (0.298) | 0.515 | (0.686) | |
住宅小区 | 0.586* | (0.341) | 1.187 | (0.764) | |
切点1 | -2.691*** | (0.918) | |||
切点2 | -1.042 | (0.905) | |||
常数项 | 10.900*** | (2.032) | |||
卡方值 | 25.430*** | ||||
F值 | 2.702*** | ||||
pseudo R2 | 0.043 | ||||
R2 | 0.085 |
注:*、**和***分别表示在10%、5%和1%水平上显著;圆括号内为估计系数的标准误。 |
真诚感谢二位匿名评审专家在论文评审中所付出的时间和精力,评审专家对本文撰写严谨性、结论凝练、研究数据等方面的修改意见,使本文获益匪浅。
[1] |
|
[2] |
龙冬平, 柳林, 周素红, 等. 地理学视角下犯罪者行为研究进展. 地理科学进展, 2017,36(7):886-902.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
王洋, 金利霞, 张虹鸥, 等. 社会空间视角下广州居住地犯罪风险的格局与模式. 地理研究, 2017,36(12):2465-2478.
[
|
[10] |
|
[11] |
侯超, 陈鹏. 基于不同个体要素的犯罪人出行距离统计特征分析. 犯罪研究, 2018, (1):37-43.
[
|
[12] |
赵勇, 刘民, 柏书华, 等. 系列入室盗窃案件的犯罪距离研究. 中国人民公安大学学报(社会科学版), 2010, (2):143-149.
[
|
[13] |
徐永胜. 系列入室盗窃犯罪距离个体差异影响因素分析. 中国刑警学院学报, 2014, (2):3-8.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
刘大千, 修春亮, 宋伟. 基于因子分析的长春市犯罪分区研究. 人文地理, 2015,30(5):38-42.
[
|
[24] |
肖露子, 柳林, 周素红, 等. ZG市工作日地铁站点扒窃案件的时空分布及其影响因素. 地理科学, 2018,38(8):1227-1234.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
戴侃, 李卫红, 闻磊, 等. 系列案件犯罪地理目标模型下空间点群综合距离算法优化. 地理科学研究, 2015, (4):16-26.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
赵梓渝, 王士君. 2015年我国春运人口省际流动的时空格局. 人口研究, 2017,41(3):101-112.
[
|
[44] |
|
[45] |
赵梓渝, 庞瑞秋, 王士君. 长春市大型零售设施空间可达性绩效测度. 地理研究, 2016,35(3):431-441.
[
|
[46] |
刘瑜. 社会感知视角下的若干人文地理学基本问题再思考. 地理学报, 2016,71(4):564-575.
[
|
[47] |
|
[48] |
|
[49] |
|
[50] |
郑文升, 卓蓉蓉, 罗静, 等. 基于空间句法的武汉城区“两抢一盗”犯罪分布环境. 地理学报, 2016,71(10):1710-1720.
[
|
[51] |
|
[52] |
|
[53] |
National Academies of Sciences, Engineering, and Medicine. Improving Health Research on Small Populations: Proceedings of a Workshop. Washington, DC: The National Academies Press, 2018: 91.
|
/
〈 |
|
〉 |