中蒙俄经济走廊蒙古国段的风沙流特征
崔珂军(1995-),男,山东青岛人,硕士,主要从事沙漠化防治与生态修复。E-mail: 464509354@qq.com |
收稿日期: 2021-05-18
录用日期: 2021-09-13
网络出版日期: 2022-01-10
基金资助
中国科学院A类战略性科技先导专项子课题(XDA2003020201)
国家重点研发计划政府间国际科技创新合作重点专项(2017YFE0109200)
中国科学院关键技术人才项目
版权
Characteristics of wind and sand flows in the Mongolian section of the China-Mongolia-Russia economic corridor
Received date: 2021-05-18
Accepted date: 2021-09-13
Online published: 2022-01-10
Copyright
中蒙俄经济走廊穿越蒙古国主要生态类型区,本文对沿线的达尔汗、乔伊尔、赛因山达、扎门乌德4个观测区的风沙流进行研究,研究结果表明:① 风沙流水平输沙量均随高度增加而降低,两者最优拟合函数随下垫面变化而不同,达尔汗和乔伊尔为指数函数,而赛因山达和扎门乌德为幂函数。② 各观测区年输沙通量空间分异明显,其中乔伊尔最大,达尔汗其次,扎门乌德再次,赛因山达最小,这与传统认知有较大不同。③ 风沙流输沙通量空间差异与多种因素有关。乔伊尔处于海洋气流影响尾闾区,春季干旱发生频率高,正值风季,风速较大,风蚀强烈;其他地区春季干旱发生频率相对较低,其中达尔汗地处自然条件较好的北部河谷区,但由于农田开垦和过度放牧,风蚀较为强烈,而扎门乌德和赛因山达风季风速相对较小,且放牧强度较低,风蚀较轻。本文的研究结论对蒙古国因地制宜开展风沙灾害防治和荒漠化治理具有重要的参考价值。
崔珂军 , 李生宇 , 范敬龙 , 王海峰 , 孟晓于 , 苗佳敏 , 吕振涛 . 中蒙俄经济走廊蒙古国段的风沙流特征[J]. 地理研究, 2021 , 40(11) : 3092 -3102 . DOI: 10.11821/dlyj020210416
Mongolia is the main route area of China-Mongolia-Russia economic corridor. Since 1990, the degradation of ecosystems has posed a severe challenge to Mongolia, especially the grasslands are seriously degraded, and the desertified grasslands reach one third of the total area of the country. Mongolia will have more economic construction activities in its desertified grassland area in the future, and wind and sand disaster control will be one of the major tasks. The China-Mongolia-Russia economic corridor crosses the main substratum ecotype landscape areas of Mongolia. In this paper, the wind erosion desertification area along the north-south longitudinal railroad in Mongolia is used as the target area for the study of wind and sand flow in four observation areas along the line, namely, Darkhan, Choir, Sayinshanda and Zamyn-Uud. Results show that: (1) The horizontal sand transport of wind and sand flow both decrease with increasing height, and the most suitable fitting functions for both vary with the subsurface, with Darkhan and Choir being exponential functions, while Sayinshanda and Zamyn-Uud are power function. (2) The spatial distribution of annual sand transport flux is not the same for each observation area, with the largest in Choir, followed by Darkhan, Zamyn-Uud, and the smallest in Sainshanda, which is different from the traditional perception. (3) The spatial distribution of sand transport fluxes from wind and sand streams is related to a variety of influencing factors. Choir has a high frequency of spring droughts because of the influence of the tail-end ocean currents, which coincides with the season of frequent strong winds, high wind speeds and severe wind erosion; other areas have relatively low frequency of spring droughts, among which, Darkhan is located in the northern valley area with better natural conditions, but wind erosion is stronger due to agricultural land reclamation and overgrazing, while in Zamyn-Uud and Sayinshanda, the winds in the windy season are relatively weak and the grazing intensity is low, so the wind erosion is light. The findings of this paper have important reference value for Mongolia to take targeted measures in wind and sand disaster and desertification control according to local conditions, and may also provide supporting evidence for the drastic changes of desertification.
表1 四种拟合函数的基本形式Tab. 1 Four basic forms of fitting function |
函数名称 | 函数形式 | 所属类别 |
---|---|---|
Allometric | 幂函数 | |
Belehradek | 幂函数 | |
Asymptotic | 指数函数 | |
Exp2p | 指数函数 |
注:运用Belehradek函数拟合时,应注意高度x大于系数b。 |
表2 各观测区风沙流挟沙垂直分布的最优拟合函数类型和表达式Tab. 2 Optimal fitting function of vertical distribution of sand carried by wind blown sand flow |
观测区 | 函数类型 | 函数表达式 | R2 |
---|---|---|---|
达尔汗 | Asymptotic函数 | 0.99981 | |
蒙古纵贯铁路西 | Asymptotic函数 | 0.99871 | |
乔伊尔气象站 | Asymptotic函数 | 0.99959 | |
赛因山达 | Allometricl函数 | 0.90281 | |
扎门乌德 | Belehradek函数 | 0.99461 |
表3 风沙流结构特征值Tab. 3 Characteristic value of aeolian sand flow structure |
特征值 | 达尔汗 | 蒙古纵贯铁路西 | 乔伊尔(气象站) | 赛因山达 | 扎门乌德 |
---|---|---|---|---|---|
S | 1.279450 | 1.360870 | 1.415073 | 1.742088 | 1.322945 |
λ | 6.815857 | 6.348243 | 6.066771 | 4.740237 | 6.558895 |
衷心感谢专家在论文评审中所付出的时间和精力,评审专家对本文立论依据、研究区典型性讨论、语言表达、结论可信度分析、讨论逻辑梳理等方面的意见,使本文科学性和总体质量大幅度提升。
[1] |
拜格诺. 风沙和荒漠沙丘物理学. 北京: 科学出版社, 1959: 16.
[
|
[2] |
吴正. 风沙地貌学. 北京: 科学出版社. 1987.
[
|
[3] |
丁国栋. 风沙物理学. 北京: 中国林业出版社. 2010.
[
|
[4] |
唐国栋, 蒙仲举, 高永, 等. 沙区光伏设施干扰下近地表输沙通量分析. 干旱区研究, 2020, 37(3): 739-748.
[
|
[5] |
俞祥祥, 李生宇, 王海峰, 等. 沙漠公路防护林不同林带位置的风沙流结构. 干旱区研究, 2017, 34(3): 707-715.
[
|
[6] |
刘芳, 郝玉光, 辛智鸣, 等. 乌兰布和沙漠东北缘地表风沙流结构特征. 中国沙漠, 2014, 34(5): 1200-1207.
[
|
[7] |
郭树江, 杨自辉, 王强强, 等. 青土湖干涸湖底风沙流结构及其输沙粒径特征. 生态学杂志, 2021, 40(4): 1-12.
[
|
[8] |
杨兴华, 何清, 霍文, 等. 沙漠地区不同下垫面近地表沙尘水平通量研究. 干旱区研究, 2014, 31(3): 564-569.
[
|
[9] |
赵明, 詹科杰, 杨自辉, 等. 民勤沙漠-绿洲低空沙尘暴结构特征研究. 中国科学: 地球科学, 2011, 41(2): 234-242.
[
|
[10] |
|
[11] |
郭树江, 杨自辉, 王多泽, 等. 石羊河流域下游青土湖近地层风尘分布特征. 干旱区地理, 2016, 39(6): 1255-1262.
[
|
[12] |
代亚亚, 何清, 陆辉, 等. 塔克拉玛干沙漠腹地复合型纵向沙垄区近地层沙尘水平通量及粒度特征. 中国沙漠, 2016, 36(4): 918-924.
[
|
[13] |
杨兴华, 何清, 程玉景, 等. 策勒绿洲-荒漠过渡带风沙前沿近地表沙尘水平通量观测. 干旱区研究, 2013, 30(6): 1100-1105.
[
|
[14] |
|
[15] |
|
[16] |
张正偲, 董治宝, 赵爱国. 腾格里沙漠东南部近地层沙尘水平通量和降尘量随高度的变化特征. 环境科学研究, 2010, 23(2): 165-169.
[
|
[17] |
|
[18] |
|
[19] |
刘箴言, 常春平, 郭中领, 等. 三类集沙仪野外测试对比. 中国沙漠, 2020, 40(6): 33-42.
[
|
[20] |
陈新闯, 董智, 李锦荣, 等. 乌兰布和沙漠不同下垫面冬季沙尘通量. 中国沙漠, 2016, 36(6): 1527-1532.
[
|
[21] |
黄雨晖, 韩小元, 赵健, 等. 新疆戈壁地区风沙流结构及其粒径特征研究. 气象与减灾研究, 2019, 42(3): 199-205.
[
|
[22] |
杨兴华, 何清, 艾力·买买提依明, 等. 塔克拉玛干沙漠东南缘沙尘暴过程中近地表沙尘水平通量观测研究. 中国沙漠, 2013, 33(5): 1299-1304.
[
|
[23] |
|
[24] |
孟翔冲. 蒙古国沙质荒漠化对中国北方沙质荒漠化影响研究. 吉林: 吉林大学硕士学位论文, 2012.
[
|
[25] |
廖杰. 沙尘暴来袭, 又是蒙古国, 而且还会继续!. https://mp.weixin.qq.com/s/q0817lB3GFZReKEeYUWUiw, 2021-4-18.
[
|
[26] |
周杰, 李生宇, 王海峰, 等. 一种大容量全向梯度集沙仪. 新疆维吾尔自治区: CN210571286U, 2020-05-19.
[
|
[27] |
张惜伟, 汪季, 海春兴, 等. 呼伦贝尔沙质草原风蚀坑地表风沙流结构特征. 干旱区研究, 2018, 35(6): 1505-1511.
[
|
[28] |
|
[29] |
胡平, 杨建英, 张艳, 等. 乌海市沿黄河两岸沙丘风沙流结构差异与冰面风沙特征. 干旱区研究, 2020, 37(3): 765-773.
[
|
[30] |
秦豪君, 韩永翔. 近56a蒙古高原草原地上净初级生产力变化. 干旱区地理, 2019, 42(4): 914-922.
[
|
[31] |
贺晶, 吴新宏, 杨婷婷, 等. 基于临界起沙风速的草地防风固沙功能研究. 中国草地学报, 2013, 35(5): 103-107.
[
|
[32] |
申彦波, 沈志宝, 杜明远, 等. 风蚀起沙的影响因子及其变化特征. 高原气象, 2005, 4(4): 611-616.
[
|
[33] |
王佳新, 萨楚拉, 毛克彪, 等. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应. 国土资源遥感, 2021, 33(1): 231-239.
[
|
/
〈 |
|
〉 |