京广大通道航空流流动韧性研究——基于原始网络与优化网络的比较
张一诺(1995-),女,河北衡水人,博士研究生,主要研究方向为信息经济地理。E-mail: zh_yinuo@126.com |
收稿日期: 2023-12-11
录用日期: 2024-06-06
网络出版日期: 2024-10-14
基金资助
国家自然科学基金项目(42171176)
Study on flow resilience of air traffic in Beijing-Guangzhou Corridor: A comparison between original network and optimized network
Received date: 2023-12-11
Accepted date: 2024-06-06
Online published: 2024-10-14
京广大通道是中国民航“十三五”规划的重要工程,旨在宏观尺度上调整空域结构并释放空域承载容量,预期将提升航空流流动韧性。本文构建了一个组合的航空流流动韧性评估框架,使用航迹延迟数据分析京广大通道开通前后航空流流动韧性的变化进而揭示其内在机制。对比原始网络与优化网络发现:原始网络中脆弱节点和脆弱航段从沿线中心机场及其关联航段转移到外围参与机场及其关联航段,优化网络中延迟传播依赖路径数量减少、范围缩小且延迟传播依赖链得到疏解,延迟依赖风险空间结构趋向于多源-网络模式,减轻了航空流网络极化状态,加强了均衡性,致使原有的沿线中心机场延迟风险的“轴带”模式得以改善。优化后的京广大通道航空流流动韧性得到明显提升。检验不同航空流配置策略的增益效果还发现,新辟路径释放闲置空域资源和阻滞延迟传播所产生的增益效果显著。京广大通道在打造航路航线集群系统的同时,实现了空域系统功能转换和空域资源充分开发利用。航空流流动韧性研究将为空域资源优化配置提供理论参考。
张一诺 , 路紫 , 成莎莎 , 康佩瑶 . 京广大通道航空流流动韧性研究——基于原始网络与优化网络的比较[J]. 地理研究, 2024 , 43(10) : 2602 -2615 . DOI: 10.11821/dlyj020231114
The Beijing-Guangzhou Corridor is an important project in China's 13th Five-Year Civil Aviation Plan (2016-2020), which aims to adjust the airspace structure and release the airspace carrying capacity on a macro scale, and it is expected to improve the resilience of air traffic flow. In this paper, a combined evaluation framework of air traffic flow resilience is constructed to analyze the changes of air traffic resilience before and after the opening of the Beijing-Guangzhou Corridor by using delay data of track, and then reveal its internal mechanism. Comparing the original network with the optimized network, we found that the vulnerable nodes and segments were transferred from the central airport and its associated segments along the route to the peripheral participating airports and associated segments. In the optimized network, the number and scope of delay propagation dependent paths were reduced and the delay propagation dependent chain was loosened. The spatial structure of delay dependence risk tended to be multi-source network mode, which reduced the polarization state of aviation flow network and enhanced the balance. The original “axial belt” model of the delay risk of the central airport along the route is improved. The flow resilience of the optimized Beijing-Guangzhou Corridor has been significantly improved. It is also found that compared with connecting new airports and adding new routes, the gain effect of releasing idle airspace resources and blocking delay propagation is more significant when new routes are created. Giving priority to developing new paths to improve the flow capacity of vulnerable nodes and segments will help the air flow network to further have the ability of delay absorption and recovery, which will significantly release airspace resources and improve the resilience level of air flow. While building the air route cluster system, the Beijing-Guangzhou Corridor realizes the function transformation of airspace system and the full development and utilization of airspace resources. The study of air flow resilience will provide theoretical reference for the optimal allocation of airspace resources. In the future, the flow resilience research should be carried out in parallel with China's corridors, aiming at the path combination with high delay risk, so as to cope with the interaction impact of flow resilience brought by the coupling of national air flow network.
表1 京广大通道机场类型划分Tab. 1 Airport type division of Beijing-Guangzhou Corridor |
机场类型 | 划分标准 | 机场名称 |
---|---|---|
8个沿线中心机场 | 航迹融合数量>63%;距离比值>70% | PEK(北京首都机场)、DXN(北京大兴机场)、SJW(石家庄正定机场)、CGO(郑州新郑机场)、WUH(武汉天河机场)、CSX(长沙黄花机场)、CAN(广州白云机场)、SZX(深圳宝安机场) |
14个沿线参与机场 | 63%>航迹融合数量>31%;距离比值>70% | ZQZ(张家口宁远机场)、UCB(乌兰察布集宁机场)、HRB(哈尔滨太平机场)、CGQ(长春龙嘉机场)、HET(呼和浩特白塔机场)、HAK(海口美兰机场)、SYX(三亚凤凰机场)、ZUH(珠海金湾机场)、TYN(太原武宿机场)、TSN(天津滨海机场)、TNA(济南遥墙机场)、JNG(济宁曲阜机场)、HDG(邯郸机场)、NKG(南京禄口机场) |
9个外围参与机场 | 31%>航迹融合数量>1%;距离比值<70% | TEN(铜仁凤凰机场)、KWL(桂林两江机场)、NNG(南宁吴圩机场)、SHE(沈阳仙桃机场)、TAO(青岛流亭机场)、LYG(连云港白塔埠机场)、CZX(常州奔牛机场)、DLC(大连周水子机场)、WEH(威海大水泊机场) |
表2 京广大通道脆弱节点和脆弱航段识别Tab. 2 Identification of vulnerable nodes and vulnerable segments of Beijing-Guangzhou Corridor |
脆弱节点识别 | R | V | Rrec | Vrec | 脆弱航段识别 | R | V | Rrec | Vrec | |
---|---|---|---|---|---|---|---|---|---|---|
沿线 中心 机场 | PEK | 0.58 | 0.46 | 0.45 | 0.14 | PEK/DXN-SJW* | 0.78 | 0.23 | 0.09 | -0.12 |
DXN | 0.77 | 0.26 | 0.41 | 0.11 | ||||||
SJW | 0.63 | 0.67 | 0.49 | 0.15 | SJW-CGO | 0.16 | 0.64 | 0.12 | 0.39 | |
CGO | 0.61 | 0.36 | 0.17 | 0.24 | ||||||
WUH | 0.69 | 0.12 | 0.46 | 0.09 | CGO-WUH | 0.58 | 0.48 | 0.19 | 0.36 | |
CSX* | 0.45 | 0.24 | 0.13 | -0.41 | ||||||
CAN | 0.61 | 0.33 | 0.36 | 0.06 | WUH-CSX* | 0.31 | 0.61 | -0.21 | 0.28 | |
SZX | 0.78 | 0.64 | 0.42 | 0.33 | ||||||
沿线参与机场 | ZQZ | 0.16 | 0.15 | 0.07 | 0.05 | ZQZ-TYN | 0.23 | 0.36 | 0.14 | 0.25 |
UCB | 0.71 | 0.46 | 0.12 | 0.13 | ||||||
HRB | 0.45 | 0.58 | 0.30 | 0.49 | CSX-CAN | 0.72 | 0.79 | 0.37 | 0.61 | |
CGQ | 0.36 | 0.69 | 0.16 | 0.58 | CGQ-SJW* | 0.45 | 0.15 | 0.30 | -0.11 | |
HET | 0.56 | 0.61 | 0.47 | 0.16 | HAK-SYX | 0.69 | 0.68 | 0.11 | 0.46 | |
HAK* | 0.21 | 0.67 | -0.19 | 0.40 | ||||||
SYX* | 0.65 | 0.71 | -0.14 | 0.63 | ||||||
ZUH | 0.76 | 0.13 | 0.12 | 0.10 | ZUH-HAK | 0.24 | 0.96 | 0.13 | 0.69 | |
TYN | 0.85 | 0.46 | 0.62 | 0.34 | ||||||
TSN | 0.49 | 0.68 | 0.24 | 0.18 | TYN-CSX* | 0.46 | 0.24 | 0.35 | -0.03 | |
TNA | 0.72 | 0.49 | 0.46 | 0.16 | ||||||
JNG | 0.23 | 0.45 | 0.18 | 0.05 | ||||||
HDG | 0.64 | 0.51 | 0.33 | 0.49 | HDG-CGO* | 0.72 | 0.61 | 0.10 | -0.25 | |
NKG | 0.33 | 0.86 | 0.16 | 0.58 | CGO-WUH* | 0.69 | 0.15 | 0.45 | -0.33 | |
外围参与机场 | TEN | 0.55 | 0.15 | 0.43 | 0.14 | TEN-KWL | 0.41 | 0.77 | 0.34 | 0.56 |
KWL* | 0.13 | 0.57 | -0.26 | -0.25 | KWL-CSX | 0.48 | 0.87 | 0.17 | 0.16 | |
NNG | 0.61 | 0.36 | 0.53 | 0.16 | DLC-YNT* | 0.96 | 0.69 | 0.76 | -0.13 | |
SHE* | 0.66 | 0.62 | -0.33 | -0.31 | SHE-PEK/DXN* | 0.15 | 0.44 | -0.20 | 0.33 | |
TAO* | 0.24 | 0.88 | -0.63 | -0.03 | TAO-JNG* | 0.23 | 0.65 | -0.15 | 0.11 | |
LYG | 0.43 | 0.45 | 0.18 | 0.35 | LYG-CZX | 0.49 | 0.68 | 0.35 | 0.45 | |
CZX | 0.28 | 0.64 | 0.17 | 0.26 | CZX-WUH* | 0.54 | 0.87 | -0.18 | 0.28 | |
DLC* | 0.38 | 0.13 | 0.26 | -0.19 | DLC-TNA | 0.92 | 0.64 | 0.57 | 0.16 | |
WEH* | 0.19 | 0.97 | -0.24 | 0.43 | WEH-TAO* | 0.47 | 0.13 | -0.46 | -0.41 |
由衷感谢匿名审稿专家对稿件结果分析深度、逻辑严谨性以及语言表达规范性的专业赐教与相助,使本文获益匪浅。
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
董雅晴, 路紫, 刘媛. 中国空中廊道划设与时空拥堵识别及其航线流量影响. 地理学报, 2018, 73(10): 2001-2013.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
董雅晴, 路紫, 张一诺. 航空流网络解构与空域资源动态配置研究: 以京-成空中廊道为例. 地理与地理信息科学, 2022, 38(1): 116-123, 132.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
张一诺, 路紫, 丁疆辉. 京广空中廊道系统延误弹性测算与航空流运行结构分析. 热带地理, 2020, 40(2): 194-205.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
/
〈 |
|
〉 |